Is China's Comprehensive Smoke-free Policy Effective? A Synthetic Difference-in-Differences Analysis in Beijing

Yichen E. Fang¹, Jason Douglas Todd² Ph.D.

¹Department of Epidemiology Harvard T.H. Chan School of Public Health yichenfang@hsph.harvard.edu

> ²Division of Social Sciences Duke Kunshan University jason.todd@duke.edu

TOPS Presentation, February 2nd 2024

1 Introduction

2 Methodology

Introduction

Image: Image:

- This work is not supported by any funding.
- The authors have received no tobacco-related funding over the past 10 years.
- The present study has not yet published, and is currently undergoing revision. Please feel free to raise any questions or comments throughout the presentation and I will pause for questions after finishing each section of the presentation. We will appreciate feedbacks in any form so that we can make our study stronger.

- Tobacco has been considered one of the leading causes of death worldwide that is highly addictive.¹.
- Many interventions or policy has been implemented to reduce tobacco consumption. In particular, comprehensive smoke-free policies (CSFP) have been recognized as one of the most effective tools to reduce smoking behaviors.².

Gaps in Knowledge

No rigorous smoke-free policy evaluation has been conducted in China, the country with one of the highest smoking prevalence.

 $\overline{\mathbb{T}}$

²Centers for Disease Control and Prevention. (2021, June 30) Tobacco Control Interventions — Health Impact in the Vears Health System Transformation — AD for Policy — CDC. https://www.cdc.gov/policy/hst/hi5/tobaccointerventions/index.html.

¹World Health Organization. (n.d.) Tobacco. Retrieved February 13, 2022, from https://www.who.int/news-room/fact-sheets/detail/tobacco

What is a comprehensive smoke-free policy?

 Policies enacted to achieve a complete smoking ban in indoor public places, workplaces and public transport, with no buffer period and smoking rooms, and clear law enforcement bodies and penalties.¹

February 2nd 2024

Smoke-free Legislation in China

Fortunately, Beijing is among the first places to witness a CSFP implementation in 2015, right in the middle of 2010 to 2020 where we have the panel data, thus granting us enough pre-treatment and post-treatment period and to finally get a glimpse of the true policy effect on the early adopters.

Therefore, This study intends to evaluate the impact of CSFP on:

- smoking rate
- eigarette consumption

Introduction

2 Methodology

5 Conclusion

9 / 29

< □ > < 凸

Difference in Differences (DiD), Revisit

Figure: Difference-in-Differences estimation, visual¹

Synthetic Control (SC), Revisit

Figure: Synthetic Control estimation, visual¹

HARVARD

¹Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statistical Association, 105(490), Artifice0490¹⁰ UBLIC HEALTH https://doi.org/10.1198/jasa.2009.ap087466

Similarities between the DiD and SC Method

 DiD estimator can be recast it into the Two-Way Fixed-Effects formulation where we fit unit (α_i) and time averages (β_t), alongside the treatment indicator.

$$(\hat{\tau}^{did}, \hat{\mu}, \hat{\beta}) = \underset{\mu, \alpha, \beta, \tau}{\operatorname{argmin}} \{ \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2 \}$$
(1)

• Synthetic Control estimator can also be recast as solving the following optimization problem which looks similar to the one in DiD. The weights $(\hat{\omega}^{sc})$ for the control units are estimated through optimization as well.¹

$$(\hat{\tau}^{sc}, \hat{\mu}, \hat{\beta}) = \underset{\mu, \beta, \tau}{\operatorname{argmin}} \{ \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \mu - \beta_t - W_{it} \tau)^2 \hat{\omega}_i^{sc} \}$$
(2)

 $^1{\rm Facure,~Matheus.~(2022)}$ Causal Inference for The Brave and True. https://matheusfacure.github.io/python-causality-handbook/landing-page.html

Synthetic Difference in Differences (SDiD)

Figure: Both Pills¹

¹Facure. (2022). *Causal Inference for The Brave and True.* https://matheusfacure.github.io/python-causality-handbook/landing-page.html

13 / 29

HARVARD

Synthetic Difference in Differences (SDiD), Cont'd

• Difference in Differences

(

$$\hat{\tau}^{did}, \hat{\mu}, \hat{\beta}) = \underset{\mu, \alpha, \beta, \tau}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2 \right\}$$
(3)

• Synthetic Diff-in-Diff

$$(\hat{\tau}^{sc}, \hat{\mu}, \hat{\beta}) = \underset{\mu, \beta, \tau}{\operatorname{argmin}} \{\sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \mu - \beta_t - W_{it}\tau)^2 \hat{\omega}_i^{sc} \}$$
(4)

• SDiD model added back the unit fixed effects (α_i) while keeping the unit weights $(\hat{\omega}^{sdid})$. Time weights $\hat{\lambda}_t^{sdid}$ were introduced into the equation.

$$(\hat{\tau}^{sdid}, \hat{\mu}, \hat{\beta}) = \underset{\mu, \alpha, \beta, \tau}{\operatorname{argmin}} \{ \sum_{i=1}^{N} \sum_{t=1}^{T} (\mathbf{Y}_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2 \hat{\omega}^{sdid} \hat{\lambda}_t^{sdid} \}$$
(5)
HARVARD
TH. CHAN
SCHOOL TPUBLIC REAT
CHANCH AND CHANCE AND CHA

February 2nd 2024

Primary Analysis: Synthetic Difference-in-Differences Design (SDID)

- Short-term effect: using donors that did not enact a CSFP between 2010 to 2015.
- **long-term effect:** use never-adopters as donors.
- Statistical significance assessed through placebo tests

Sensitivity Analyses

- Fixed-effect regression: we identified the correlation between the proportion of the population covered by the CSFP within a province and outcomes of interest.
- Leave-one-out analyses: an iterative process where a weighted donor was removed from the pool, a new synthetic control was generated, and treatment effects estimated.

Data Source: China Family Panel Studies (CFPS) from 2010 to 2020 (a biennial survey)

Outcome: smoking rate and smoking amount

Treated unit: a surveyed district in Beijing (the name of the district is indexed given the privacy protection policy with the CFPS data)

Donor units: Chinese district/county level units with over 100 participants surveyed who has not been treated with CFPS. In this study, we included 72 donors for short-term and 63 donors for long-term estimation.

Administrative Structure

CFPS sampled at the **district-level** in Beijing (a municipality) Therefore, we chose donors at this administrative level

Introduction

2 Methodology

5 Conclusion

Figure: Summary of spaghetti plots for all SDID models

→
 →

TT.

HARVARD

Summary of Results

Figure: CSFP policy impact on the smoking rate and cigarette consumption over time

SDID Group	Smoking Rate (95% CI)	Smo	king Amount (95% CI)]	
Short-term (one year after policy)	0.018 (-0.052 to 0.088)	-0.	.872 (-4.138 to 2.394)	Ē	
Long-term (five years after policy)	-0.034 (-0.085 to 0.017)	-0.	.454 (-3.043 to 2.135)		V
				HAR	VARD
				T.H. (CHAN PUBLIC HEALTH
		• •		E	୬୯୯
S	moke-free Policy Evaluation		February 2nd 2024	4	20 / 29

Sensitivity Analysis

 Figure: Leave-one-out SDID estimation of change in short-term smoking rate

 HARVARD

 T.H. CHAN

 Stroke-free Policy Evaluation

 February 2nd 2024
 21/29

Fixed-effects regression across time found **statistically significant correlations** between the provincial-level smoking rate (p<0.001) / cigarette consumption (p<0.01) and the percentage of the population covered by the CSFP in each province.

Intuition

That is, if the CSFP coverage moves from 0 to 100% of a province, the change is associated with:

- () a reduced smoking rate of 5.8%
- 2 a reduction of 2.16 cigarettes per smoker smoked per day

Introduction

2 Methodology

23 / 29

< □ > < 凸

- Combining the SDiD model and regression resuts, we noticed that the limited policy effect in Beijing compared to late adopters may be due to its previous partial smoke-free policy.
- CSFP may lack the capacity to affect "stubborn smokers" given the decrease in smoking rate but not the smoking amount among the smokers.

Strength

- By adding weights to both units and time via an SDiD design, we constructed a valid counterfactual for policy impact evaluation.
- Studying smoking-related topics in China is difficult given the limited data access. Nevertheless, this research leverages the best smoking-related open-access data to implement a quasi-experimental design.

Limitations

- Ounty level data collected were not self-representative by the survey design, hampering internal validity.
- Only analyzed six time points (three pre-intervention) hence, the estimate via SDID could be less precise.
- Finally, while using the county-level CSFP-free donor pool is appropriate given the basic requirements by the SDID methodology, the SDID model may yield less valid comparisons due to the highly unbalanced development across China.

Introduction

2 Methodology

Although no statistically significant result was identified with SDID models, we found **some suggestive evidence that the policy impact on long-term smoking rate.** The validity of this estimation is backed by:

- substantial numerical reduction in smoking rate
- ② consistent estimates in leave-one-out analyses
- Statistically significant negative correlations found between provincial CSFP coverage and both the smoking rate and cigarette consumption in the fixed-effect regressions

Introduction

2 Methodology

5 Conclusion

28 / 29

Smoke-free Policy Evaluation

February 2nd 2024

- A national-level CSFP is recommended for improving population health.
- Future studies with more detailed and higher quality data to confirm the comprehensive smoke-free policy impact found in this study and further investigation into its implementation status in China are warranted.

