

Health Beliefs and the Long Run Effect of Medical Information

Jérôme Adda 1 $\,$ Manuela Puente-Beccar 2

¹Bocconi University & RF Berlin

 $^2\mathrm{Max}$ Planck Institute for Research on Collective Goods

September 5, 2024

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	00000000000000000000	0000000	

► Funding sources for the paper: own (and modest) university research allowance.

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	000000000000000000000	0000000	

- Funding sources for the paper: own (and modest) university research allowance.
- ▶ No tobacco-related funding sources over the last 28 years.

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	000000000000000000000	0000000	

- Funding sources for the paper: own (and modest) university research allowance.
- ▶ No tobacco-related funding sources over the last 28 years.
- Potential financial repercussions in publishing findings reaching the opposite conclusion: none.

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	000000000000000000000	0000000	

- Funding sources for the paper: own (and modest) university research allowance.
- ▶ No tobacco-related funding sources over the last 28 years.
- Potential financial repercussions in publishing findings reaching the opposite conclusion: none.
- ▶ Replication: all data is coming from public sources.

Introduction	Evidence	Model	Estimation	Results and policy
•000	000000000	000000000000000000000	0000000	

• Considerable progress in science and in particular medicine since the late XIXth century

Introduction	Evidence	Model	Estimation	Results and policy
•000	000000000	000000000000000000000	0000000	

- ▶ Considerable progress in science and in particular medicine
- ▶ Those discoveries are only useful if a large part of the population understands them and adopts them.

Introduction	Evidence	Model	Estimation	Results and policy
•000	000000000	0000000000000000000	0000000	

- ▶ Considerable progress in science and in particular medicine
- Those discoveries are only useful if a large part of the population understands them and adopts them.
- ▶ How successful is new medical information in changing perception and behavior in the long-run?

Introduction $\bullet 000$	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

- ▶ Considerable progress in science and in particular medicine
- Those discoveries are only useful if a large part of the population understands them and adopts them.
- ▶ How successful is new medical information in changing perception and behavior in the long-run?
- ▶ Some socio-economic groups are difficult to reach
 - ▶ In the short-run, not everyone receives/understands/trusts medical information.
 - ▶ With time, this information may indirectly reach groups who are unreceptive in the first place.

Introduction •000	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

- ▶ Considerable progress in science and in particular medicine
- Those discoveries are only useful if a large part of the population understands them and adopts them.
- ▶ How successful is new medical information in changing perception and behavior in the long-run?
- ▶ Some socio-economic groups are difficult to reach

► Examples:

Introduction •000	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

- ▶ Considerable progress in science and in particular medicine
- Those discoveries are only useful if a large part of the population understands them and adopts them.
- ▶ How successful is new medical information in changing perception and behavior in the long-run?
- ▶ Some socio-economic groups are difficult to reach
- ► Examples:
 - Smoking: beliefs about the product went from positive to negative over a century.

Introduction •000	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

- ▶ Considerable progress in science and in particular medicine
- Those discoveries are only useful if a large part of the population understands them and adopts them.
- ▶ How successful is new medical information in changing perception and behavior in the long-run?
- ▶ Some socio-economic groups are difficult to reach
- ► Examples:
 - Smoking: beliefs about the product went from positive to negative over a century.
 - ► Vaccination: MMR, COVID

Introduction •000	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

- ▶ Considerable progress in science and in particular medicine
- Those discoveries are only useful if a large part of the population understands them and adopts them.
- ▶ How successful is new medical information in changing perception and behavior in the long-run?
- ▶ Some socio-economic groups are difficult to reach
- ► Examples:
 - Smoking: beliefs about the product went from positive to negative over a century.
 - ▶ Vaccination: MMR, COVID
 - ▶ More broader issue: climate change, beliefs and personal engagement.

Introduction $0 \bullet 00$	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

Motivation - smoking

- Smoking is the leading cause of preventable deaths in developed nations
- CDC estimates a cost of 225 billion USD in direct medical care for adults

Health information on smoking:

- ▶ 1950: first scientific results receive widespread attention
- ▶ 1964: Surgeon General Report on Smoking and Health

Beliefs about smoking:

- ▶ 1970: 30% did not believe smoking can cause lung cancer
- ▶ 2020: 90% believes smoking can cause lung cancer disparities by education, race, age or region

Introduction 0000	Evidence 00000000	Model 00000000000000000000	Estimation 0000000	Results and policy

• We gather extensive evidence on beliefs about smoking, over time and heterogeneous groups.

vidence 1		Results and policy
	, indefice	

- We gather extensive evidence on beliefs about smoking, over time and heterogeneous groups.
- ▶ We study the long run perspective, well over a century.

Introduction 0000	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

- We gather extensive evidence on beliefs about smoking, over time and heterogeneous groups.
- ▶ We study the long run perspective, well over a century.
- Dynastic/life cycle model of competing mortality risk, risk perception, information propagation and smoking.

Introduction 0000	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy
0000	000000000	000000000000000000000000000000000000000	0000000	000000000

- We gather extensive evidence on beliefs about smoking, over time and heterogeneous groups.
- ▶ We study the long run perspective, well over a century.
- Dynastic/life cycle model of competing mortality risk, risk perception, information propagation and smoking.
- ▶ We allow for many sources of learning about the effect of tobacco
 - ▶ introspection, by learning from one's own experience.
 - social learning in directed network: friends sharing their experience.
 - public health information

Introduction 0000	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

- We gather extensive evidence on beliefs about smoking, over time and heterogeneous groups.
- ▶ We study the long run perspective, well over a century.
- Dynastic/life cycle model of competing mortality risk, risk perception, information propagation and smoking.
- We allow for many sources of learning about the effect of tobacco
- We show that such a model can rationalize many aspect of the data.

- We gather extensive evidence on beliefs about smoking, over time and heterogeneous groups.
- ▶ We study the long run perspective, well over a century.
- Dynastic/life cycle model of competing mortality risk, risk perception, information propagation and smoking.
- We allow for many sources of learning about the effect of tobacco
- We show that such a model can rationalize many aspect of the data.
- Evaluate the importance of medical information.

Introduction $000 \bullet$	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy

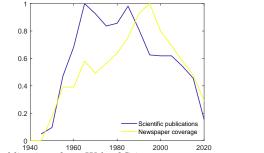
Plan of talk

Introduction

Evidence on smoking and beliefs

Model

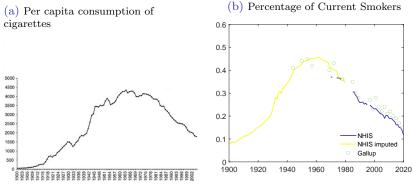
Estimation


Results and policy implications

Data sources

Outcome	Source	Period
Smoking	National Health Interview Survey (NHIS), cross-sectional data with retrospective information.	1970-2020
Health shocks	National Health and Nutrition Examination Survey (NHANES), cross-sectional data	1966-2020
	Health and Retirement Study (HRS), panel data. Includes restricted data on cancer site	1992-2020
Mortality	CDC death rates	1900-1998
	wonder CDC death rates	1999-2020
	Surgeon General Report (SGR), 2014, aggregate data on Smoking Attributable Mortality	1965-2014
Beliefs	Gallup US poll, aggregate data for given years	1954-2013
	Monitoring the Future (MTF), aggregate data on a panel of young individuals	1980-2020
	National Survey on Drug Use and Health (NSDUH) (for- merly the National Household Survey on Drug Abuse - NHSDA), cross-sectional data	1985-2020
	Teenage Attitudes and Behavior Concerning Tobacco (TABT) cross-sectional data on adolescents	1992
	Annenberg Tobacco Risk Study (ATRS), cross-sectional data on adolescents	1999
	Population Assessment of Tobacco and Health (PATH), panel data	2014-2021
	Health Information National Trends Surveys (HINTS), cross-sectional data	2003, 2015, 2017
Medical information	Web of Science (scientific publications), time series	1945-2020
	Ancestry (newspaper articles), time series	1930-2020
Tobacco industry	Federal Trade Commission Report 2020 (Advertisements and Promotion), time series	1970-2020
	OpenSecrets (Lobbying), time series	1999-2020
Cigarette prices	The Tax Burden of Tobacco (TBT), time series	1955-2019
Social networks	General Social Survey (GSS), cross-sectional	1985, 2004
Demographic composi- tion	IPUMS USA, cross-sectional data	1910-2020

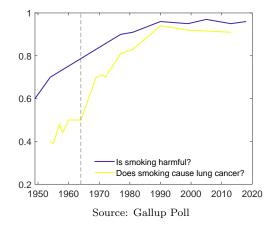
Medical information incriminating smoking



Notes: Scientific publications from Web of Science, newspaper coverage from Ancestry. The series have been normalized between zero and one.

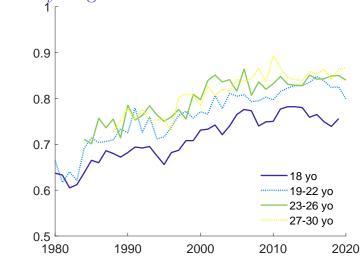
- Medical hard evidence starts in the early 1950s (Doll and Hill, 1950).
- ▶ Publicized by the Surgeon General report in 1964.

Evolution of smoking



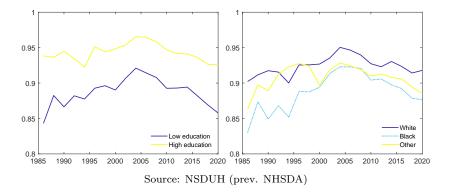
American Lung Association (2004)

NHIS, Gallup and own estimation from NHIS start and quit date


	Introd 0000	uction Evidence	Model 000000000000000000000000000000000000	Estimation 0000000	Results and policy
--	----------------	-----------------	--	-----------------------	--------------------

Beliefs about the harmfulness of tobacco

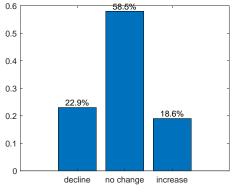
Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	000000000000000000000	0000000	



Source: Monitoring the Future

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	000000000000000000000000000000000000000	0000000	000000000

Beliefs by Education and Race


How much do people risk harming themselves physically and in other ways when they smoke one or more packs of cigarettes per day? Percentage saying moderate or great risk

Individual changes in beliefs (1)

Panel data $\sim 37 {\rm K}$ individuals, 5 waves in 2014-2019

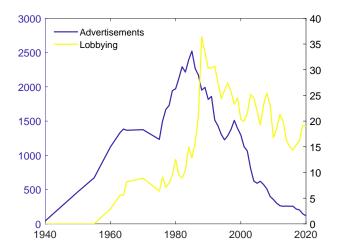
Changes in individual \times year observations

Source: PATH

Introduction Evidence Model Estimation Results and policy

Selected tobacco advertisement, various years $_{1885}$

1951


PHILIP MORRIS

14/49

	Introduction 0000	Evidence 00000000	Model 000000000000000000000	Estimation 0000000	Results and policy
--	----------------------	----------------------	--------------------------------	-----------------------	--------------------

Tobacco industry efforts

Introduction 0000	Evidence 000000000	Model ●000000000000000000000000000000000000	Estimation 0000000	Results and policy

▶ Many individuals followed from birth to death

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	●000000000000000000000000000000000000	0000000	

- Many individuals followed from birth to death
- Overlapping cohorts and dynastic model
 - ▶ First cohort born around 1885
 - ► A new cohort is born about every 25 years
 - Parthenogenesis reproduction: each individual produces an offspring with the same characteristics.

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	●000000000000000000000000000000000000	0000000	

- ▶ Many individuals followed from birth to death
- Overlapping cohorts and dynastic model
- Each individual belongs to a birth cohort c_i and a group g_i
 - education level
 - ► race
 - ▶ geographical location

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	●000000000000000000000000000000000000	0000000	

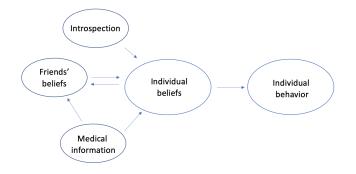
- ▶ Many individuals followed from birth to death
- Overlapping cohorts and dynastic model
- Each individual belongs to a birth cohort c_i and a group g_i
- ▶ Individuals decide in each period whether to smoke

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	●000000000000000000000000000000000000	0000000	

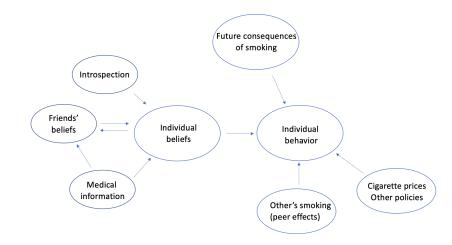
- ▶ Many individuals followed from birth to death
- Overlapping cohorts and dynastic model
- Each individual belongs to a birth cohort c_i and a group g_i
- ▶ Individuals decide in each period whether to smoke
- ▶ Decision depends on individual and societal factors:

introduction 11	lence Model 000000 000000	Estima	resource and poincy

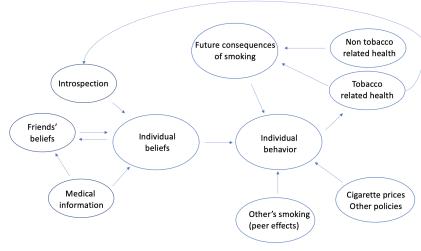
- ▶ Many individuals followed from birth to death
- Overlapping cohorts and dynastic model
- ▶ Each individual belongs to a birth cohort c_i and a group g_i
- ▶ Individuals decide in each period whether to smoke
- ▶ Decision depends on individual and societal factors:
 - ▶ past behavior
 - ▶ peer effects
 - health status
 - beliefs about how dangerous tobacco is
 - prices


▶ Heterogeneous beliefs that evolve as individuals learn

Introduction	Evidence	Model	Estimation	Results and policy
0000	00000000	●000000000000000000000000000000000000	0000000	


Model

- ▶ Many individuals followed from birth to death
- Overlapping cohorts and dynastic model
- ▶ Each individual belongs to a birth cohort c_i and a group g_i
- ▶ Individuals decide in each period whether to smoke
- ▶ Decision depends on individual and societal factors:
- ▶ Heterogeneous beliefs that evolve as individuals learn
 - ▶ Initial beliefs passed on by the parent
 - updating of beliefs over the life-cycle by
 - introspection,
 - exchange of information among individuals
 - medical information or tobacco-firm obfuscation.


Overview of the model: beliefs and behavior

Overview: more determinants drive behavior

Overview: full model

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	000000000000000000000000000000000000	0000000	

▶ Agents derive utility from tobacco, and a general consumption good.

Introduction	Evidence	Model	Estimation	Results and policy
0000	00000000	00000000000000000000	0000000	

- Agents derive utility from tobacco, and a general consumption good.
- ▶ Tobacco is addictive through a habit stock.

- Agents derive utility from tobacco, and a general consumption good.
- ▶ Tobacco is addictive through a habit stock.
- Preferences towards smoking depends on the occurrence of tobacco-related diseases.

- Agents derive utility from tobacco, and a general consumption good.
- ▶ Tobacco is addictive through a habit stock.
- Preferences towards smoking depends on the occurrence of tobacco-related diseases.
- ► Taste for tobacco is heterogeneous and depends in part on the prevalence of smoking in the population and in the social group of the individual.

- Agents derive utility from tobacco, and a general consumption good.
- ▶ Tobacco is addictive through a habit stock.
- Preferences towards smoking depends on the occurrence of tobacco-related diseases.
- ▶ Taste for tobacco is heterogeneous and depends in part on the prevalence of smoking in the population and in the social group of the individual.
- Consumption is financed by an income that varies across age, cohort and socio-economic groups.

The effect of tobacco on health

► True conditional probability of getting a smoking-related health shock (e.g. lung cancer) depending on age, the cumulative stock of smoking and demographics.

The effect of tobacco on health

- True conditional probability of getting a smoking-related health shock (e.g. lung cancer) depending on age, the cumulative stock of smoking and demographics.
- ▶ The agent hesitates between two states of the world:
 - H: Smoking is harmful: Prob(Disease|H) depends on age, demographics and smoking
 - NH: Smoking is not harmful: Prob(Disease|NH) depends on age, demographics but not smoking

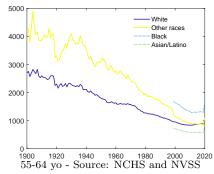
Beliefs about the danger of smoking

▶ Log odds ratio of the prior of tobacco being harmful:

$$\lambda_{it} = \ln\left(\frac{P_{it}(H)}{P_{it}(NH)}\right)$$

From the perspective of the individual with a given odds ratio λ_{it} :

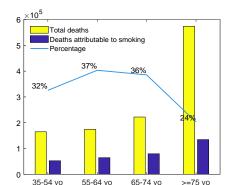
$$P(Disease) = \frac{Prob(Disease|H)e^{\lambda_{it}}}{1 + e^{\lambda_{it}}} + \frac{Prob(Disease|NH)}{1 + e^{\lambda_{it}}}$$


	policy
0000 00000000 0000000000 00000000 00000000)

Mortality: competing risks framework

- ► Two causes of mortality
 - ▶ tobacco and non-tobacco related,

determined by two independent shocks.


▶ Death occurs if either of these two shocks occur.

Mortality: competing risks framework

- ▶ Two causes of mortality
- Smoking-related mortality depends on exposure to tobacco, through tobacco related diseases and arises mostly in older age

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	0000000000000000000	0000000	

Dynamic choice

- ▶ In each period the agent decides whether to smoke or not.
- ▶ The agent balances the current utility of smoking with future consequences.
- ▶ Future consequences depends in part on:
 - ▶ on the beliefs the agent has on how dangerous tobacco is.
 - ▶ on the agent's non-tobacco health
 - addiction
- Behavior is the solution to a Bellman equation.

Introduction Evidence Model Estimation Results and policy

Evolution of beliefs - 1^{rst} channel: introspection

• Experiencing a disease potentially related to smoking leads to Bayesian updating:

$$\begin{cases} \lambda_{it} = \lambda_{it-1} + \ln\left(\frac{Prob(Disease|H)}{Prob(Disease|NH)}\right) & \text{if disease} \\ \lambda_{it} = \lambda_{it-1} + \ln\left(\frac{1-Prob(Disease|H)}{1-Prob(Disease|NH)}\right) & \text{if not} \end{cases}$$

▶ In short

$$\Delta \lambda_{it} = \mathcal{BL}_{it}(\text{Onset of disease})$$

At young ages, observing no tobacco health signal is uninformative as no-one expects to be sick in any case.

Evolution of beliefs - 2^{nd} channel: external information

- Scientific publications provide new information on the health consequences of smoking. This information may reach the public directly
- ▶ Denote by $MedPub_{t-k} \in [0, 1]$ an index of the number of medical publications in year t k that associate smoking with poor health.
- Denote by $\delta_{g_i}^M$ the weight an individual in the group g_i places on that information and by $\bar{\lambda}$ the highest log-odds ratio, corresponding to a near certainty that tobacco is harmful

$$\mathcal{EI}_{it}^M = \bar{\lambda} \delta_{g_i}^M \ MedPub_{t-k}$$

	Introduction 0000	Evidence 000000000	Model 0000000000●00000	Estimation 0000000	Results and policy
--	----------------------	-----------------------	---------------------------	-----------------------	--------------------

Evolution of beliefs - 2^{nd} channel: external information

▶ Denote by $TobObf_t \in [0, 1]$ an index of the intensity of the tobacco industry spending on information. Denote by $\underline{\lambda}$, the log-odds ratio corresponding to a near certainty that tobacco is not harmful:

$$\mathcal{EI}_{it}^{Tob} = \underline{\lambda} \delta_{g_i}^{Tob} \ TobObf_t$$

▶ Absent other channels, the log-odds ratio evolves as:

$$\lambda_{it} = \lambda_{it-1} + \mathcal{EI}_{it}^M + \mathcal{EI}_{it}^{Tob}$$

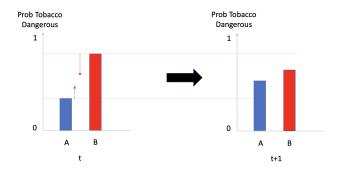
Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	000000000000000000000000000000000000000	0000000	000000000

▶ Learning from others: DeGroot agents

- ▶ Learning from others: DeGroot agents
- ► Individuals belong to a network of friends and relatives, denoted *F_i*, with whom they exchange views on the state of the world and incorporate it into their beliefs.

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	00000000000€0000	0000000	

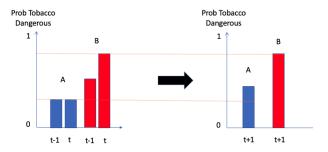
- ▶ Learning from others: DeGroot agents
- Individuals belong to a network of friends and relatives, denoted \mathcal{F}_i , with whom they exchange views on the state of the world and incorporate it into their beliefs.
- ► The structure of the network is specific to a socioeconomic group: homophily along education, race, region and birth cohort


	Low educated		High educated			
	White	Black	Other	White	Black	Other
% Contacts low-edu	71	74	75	32	45	40
% Contacts high-edu	29	26	25	68	55	60
% Contacts white	95	9	16	96	12	20
% Contacts black	0	87	7	1	88	6
% Contacts other race	4	5	77	3	0	74

- ▶ Learning from others: DeGroot agents
- Individuals belong to a network of friends and relatives, denoted \mathcal{F}_i , with whom they exchange views on the state of the world and incorporate it into their beliefs.
- The structure of the network is specific to a socioeconomic group: homophily along education, race, region and birth cohort
- ▶ The members of the network are fixed over the life-cycle

Introduction	Evidence	Model	Estimation	Results and policy
0000	000000000	000000000000000000000000000000000000000	0000000	000000000

When two people meet... ► Belief averaging

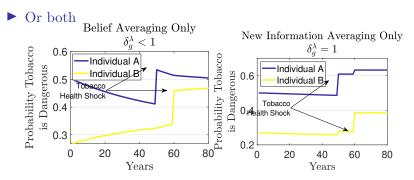


$$\lambda_{it} = (1 - \delta_{g_i}^{\lambda})\lambda_{it-1} + \delta_{g_i}^{\lambda}\mu_i \sum_{j \in \mathcal{F}_i, j \neq i} \lambda_{j,t-1} \qquad \mu_i = 1/(card(\mathcal{F}_i) - 1)$$

Introduction 0000	Evidence 00000000	Model 000000000000000000000000000000000000	Estimation 0000000	Results and policy

When two people meet...

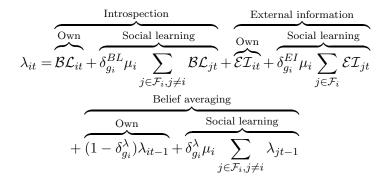
- Belief averaging
- ▶ New information averaging



 $\lambda_{it} = \lambda_{it-1} + \mu_i \quad \sum \quad (\delta_{g_i}^{BL} \mathcal{BL}_{j,t} + \delta_{g_i}^{EI} \mathcal{EI}_{j,t})$ $j \in \mathcal{F}_i, j \neq i$

Introduction	Evidence	Model	Estimation	Results and policy
0000	00000000	000000000000000000000000000000000000	0000000	

When two people meet...


- Belief averaging
- ▶ New information averaging

Introduction	Evidence	Model	Estimation	Results and policy
0000	00000000	000000000000000000000000000000000000	0000000	

Evolution of beliefs

Putting everything together, introspection, direct and indirect information through social learning:

Introduction 0000	Evidence 000000000	Model 000000000000000000000000000000000000	Estimation 0000000	Results and policy

Initial conditions

- An agent starts life at age 15 in period t_0 :
 - ▶ with the same demographics as the parent
 - stock of addiction set to zero.
 - beliefs are inherited from the parent with a discount δ^F .
- ▶ The model starts in 1885 and the first cohort is born 1866-1874. Those individuals start with a log-odds belief drawn from a normal distribution:

$$\lambda_{i0} \sim \mathcal{N}(\mu_{\lambda}, \sigma_{\lambda})$$

- Over the period 1885 to 2020, we consider six cohorts, coming of age around 1910, 1935, 1960, 1985, and 2010.
- We reweigh each group annually to match observed demographic patterns.

- ▶ Up to about 1920: little evolution
 - ▶ Smoking is expensive, more likely in high SES groups
 - ▶ No clear medical information
 - Competing risk feature of mortality and short life expectancy means that few smokers experience smoking related diseases: limited learning through introspection
 - ▶ Not much to learn from friends and relatives.

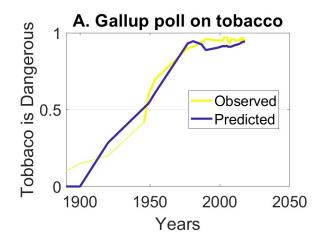
- ▶ Up to about 1920: little evolution
- ▶ Between about 1920-1960: unequal and slow diffusion
 - ▶ Smoking becomes cheaper and spreads to lower classes
 - ► Life expectancy increases, especially for educated whites: larger scope for learning, more to lose.
 - ▶ Diffusion of beliefs in more affluent segment of the society

- ▶ Up to about 1920: little evolution
- ▶ Between about 1920-1960: unequal and slow diffusion
- ▶ Between 1960-2004: (slow) convergence
 - Medical information: reaches the more affluent and educated part of society directly.
 - ► More scope for individual learning as life expectancy increases further
 - Large role for the diffusion of beliefs across individuals as more smokers
 - Less affluent groups indirectly benefit from this diffusion but with a lag
 - ▶ Price increases also curb smoking

- ▶ Up to about 1920: little evolution
- ▶ Between about 1920-1960: unequal and slow diffusion
- ▶ Between 1960-2004: (slow) convergence
- ► After 2004: slight divergence
 - Reduced Medical information
 - Persistent role of tobacco industry
 - Reduced role of diffusion of beliefs as less smokers
 - ▶ Unlearning in young smokers through introspection

 troduction	Evidence 00000000	Model 00000000000000000000	Estimation •000000	Results and policy

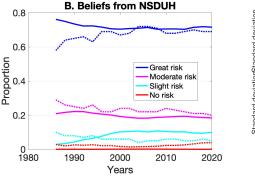
Estimation

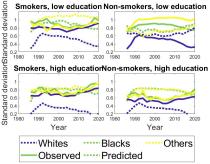

- Estimation based on simulated method of moments
- ▶ Model is solved and simulated for a given set of parameters
- Minimize the distance between simulated and observed moments
- We initialize the simulation with a cohort born in 1875, which is discarded in the estimation.

Moments used in estimation

	Moment	Source	Number
			of momen
Beliefs	Proportion who believe smoking is harmful, time trend	Gallup	14
	Proportion who believe smoking is harmful in the life cycle, by cohort	MTF	24
	OLS regression of beliefs on demographics, year and smoking status	NSDUH, PATH, HINTS, ATRS, TABT	30
	OLS regression of beliefs on demographics, region and smoking status	NSDUH	11
	OLS regression of individual changes in beliefs on de- mographics and smoking status	PATH	7
	Distribution of beliefs in Likert scale	NSDUH	216
	Standard deviation of beliefs in Likert scale, by de- mographics and smoking status	NSDUH	
Smoking	Proportion of ever smokers, by socioeconomic group and birth cohort	NHIS	28
	Proportion of current smokers, by socioeconomic group and age	NHIS	576
Quitting	RE panel regression of quitting on demographics and	HRS	$10^{34/49}$

Model fit: beliefs over time

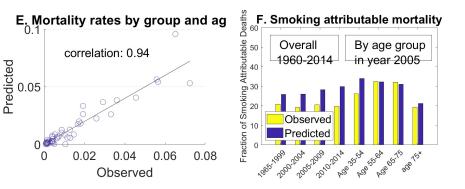


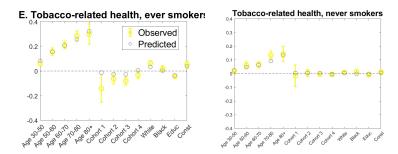

Introduction 0000 Evidence 00000000

Estimation 000000

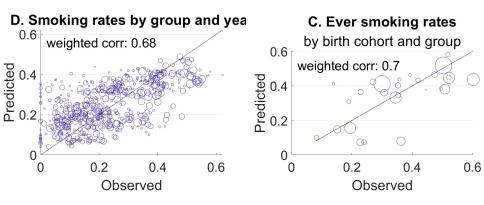
Results and policy

Model fit: intensity and heterogeneity in beliefs




Note: observed data from NSDUH.

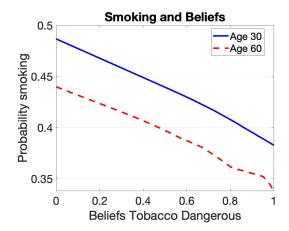
Model fit: mortality and smoking-attributable mortality



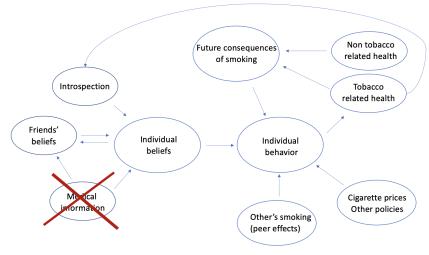
Model fit: cancer rates ever smokers / never smokers

Model fit: current and ever smoking

Introduction 0000


Estimation 0000000 Results and policy •000000000

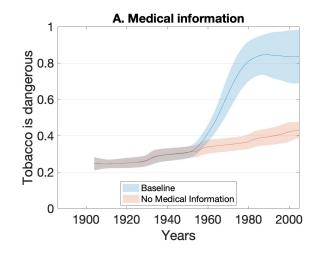
Parameter estimates, beliefs formation


A. Initial conditions				
	0.134			
Std dev of initial beliefs, first cohort, $\sigma_{\lambda} = 0.23$				
Parent-child shifter, δ^F 0.723				
B. Own weight	In I (SBL)			
	<u>ealth shock</u> $(\delta_{g_i}^{BL})$			
Average effect 0.0331 Average	e effect 1			
High educated 7.05%				
Blacks -6.13%				
Other races -3.4%				
Midwest -21.95%				
South 32.11%				
West 13.55%				
Tobacco spending on advert 0.07				
Tobacco spending on lobbying 0.11				
C. Social learning				
<u>Others' medical information</u> $(\delta_{g_i}^{EI})$ <u>Others'</u>	<u>Others' health shocks</u> $(\delta_{a_i}^{EI})$			
Average effect 0.254 Average	e effect 0.222			
High educated -1.78% High ed	lucated 10.78%			
Blacks 9.48% Blacks	13.52%			
Other races -8.94% Other r	aces 7.74%			
Midwest -1.33%				
South 4.18%				
West -2.21%				
D. Belief averaging $(\delta_{q_i}^{\lambda})$				
	lucated, white 0.087			
	lucated, blacks 0.0683			
Low educated, others 0.00639 High ed	lucated, others 0.0184			

Beliefs and probability of smoking

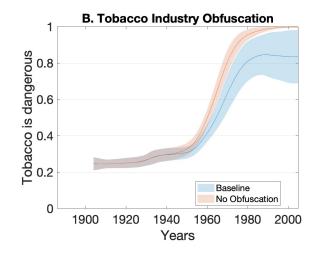
Policy counterfactuals

Introduction	Evidence 000000000	Model 00000000000000000000	Estimation 0000000	Results and policy

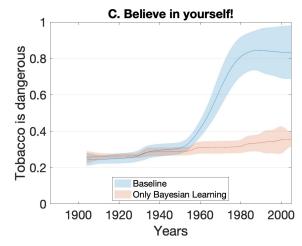

Policy counterfactuals

We use our model to quantify the long term effects of medical information. We consider:

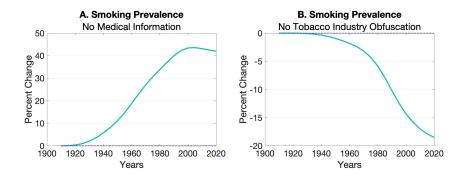
- 1) No medical information: publication of scientific articles on the harms of smoking and newspaper coverage set to zero
- 2) No obfuscation: advertisement and lobbying set to zero
- 3) Only introspection: all other information channels set to zero



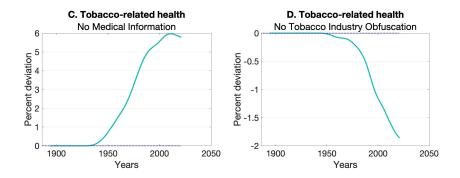
Policy counterfactual: beliefs- no medical info



Policy counterfactual: beliefs- no obfuscation



Policy counterfactual: believe in yourself? Only Bayesian updating



Policy counterfactual: smoking

Policy counterfactual: cancer

Introduction 0000	Evidence 000000000	Model 000000000000000000000	Estimation 0000000	Results and policy 000000000

Conclusion

- ▶ First paper to look at the evolution of beliefs about health behavior over an extended period
- Proposes a framework to endogenize beliefs and health behavior
- ▶ Long-run perspective and focus on the role of heterogeneity
- Role of different socio-economic groups in mediating diffusion
- Important to target influential groups, rather than trying to convince hard to reach groups.
- Medical information is slow to have an effect at first, but substantial in the long run.