A Matched Analysis of the Association Between Federally Mandated Smoke-free Housing Policies and Health Outcomes among Medicaid-enrolled Children in Subsidized Housing, New York City, 2015–2019

Andrea R. Titus, PhD
June 30, 2023
Disclosures

• Funding for this work:
 – National Cancer Institute (grant R01 CA220591)
 – Agency for Healthcare Research and Quality (training grant T32HS026120)

• Other funding sources over prior 10 years:
 – Centers for Disease Control and Prevention
 – Robert Wood Johnson Foundation
 – National Institutes of Health
 – NYU Center for the Study of Asian American Health
 – NYU Collaborative Center in Children’s Environmental Health Research and Translation

• I have never received funding from the tobacco industry

Disclaimer: The views and opinions expressed in this article are those of the author(s) and do not necessarily reflect the official policy or position of the New York State Department of Health. Examples of analysis performed within this article are only examples. They should not be utilized in real-world analytic products.
Secondhand smoke (SHS) exposure affects the health of adults and children in the U.S.

- Among adults, SHS exposure is associated with:
 - Nearly 34,000 heart disease deaths annually
 - More than 7,300 lung cancer deaths annually

- Among children, SHS exposure is associated with asthma attacks, respiratory infections, ear infections, and SIDS, among other outcomes

Source: Centers for Disease Control and Prevention
SHS exposure varies by income level in the U.S.

Prevalence of SHS exposure among ages 3-11 and 12-17 by income level, 2013-2016

Source: National Health and Nutrition Examination Survey (NHANES)
SHS exposure varies by race/ethnicity

Prevalence of SHS exposure among ages 3-11 and 12-17 by race/ethnicity, 2013-2016

Source: NHANES
Smoking in the home a major driver of exposure

Prevalence of SHS exposure among ages 3-11 and 12-17 by number of smokers in the home, 2013-2016

Source: NHANES
Individuals in multi-unit housing are especially at risk due to transfer between units

Illustration of real-time changes in PM$_{2.5}$ levels in a multiunit residential building

Source: King 2010
2016 Housing and Urban Development Rule prohibits smoking in public housing

• “Public housing authorities (PHAs) must design and implement a policy prohibiting the use of prohibited tobacco products in all public housing living units and interior areas… as well as in outdoor areas within 25 feet from public housing and administrative office buildings in which public housing is located.”

Policy required to be implemented by July 31, 2018
Prior evidence for smoke-free housing (SFH) policies

• Evidence of air quality changes associated with SFH is mixed
 – Philadelphia: policy associated with decrease in airborne nicotine in public areas in year following implementation (Klassen 2017)
 – Boston: mixed results; some evidence of reductions in PM$_{2.5}$, however, one study found that airborne nicotine in apartments without resident smokers declined at similar rates between Boston Housing Authority and comparison developments (Russo 2015; MacNaughton 2016; Levy 2015)
 – New York City: no difference in air quality trends between NYC Housing Authority (NYCHA) and comparison developments in early post-policy period (Thorpe 2020); longer-term trends revealed declines in airborne nicotine in NYCHA hallways, relative to comparison (Anastasiou 2023)
 – Norfolk, VA: policy associated with increased PM$_{2.5}$ and airborne nicotine in year following implementation (Plunk 2020)

• There is little prior literature on health effects of SFH in public housing
 – Colorado: policy associated with reduction in self-reported breathing problems (Young 2016)
Prior evidence for other smoke-free policies

Results from meta-analysis of smoke-free legislation and asthma hospitalizations

C Asthma admissions

<table>
<thead>
<tr>
<th>Study</th>
<th>Risk Change (%)</th>
<th>Effect Size</th>
<th>CI</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaudreau (2013)</td>
<td>11.00% (-37.00 to 95.00)</td>
<td>0.6%</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Millett (2013)</td>
<td>-8.90% (-11.00 to -7.00)</td>
<td>85.2%</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Rayens (2008)</td>
<td>-18.00% (-29.00 to -4.00)</td>
<td>14.2%</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Overall (I²=14.6%)</td>
<td>-10.10% (-15.20 to -5.00)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Smoke-free legislation in workplaces and public areas associated with a 10.1% reduction in hospitalizations for asthma

Source: Been 2014
Analytic goal

- **Aim**: Use Medicaid claims data to evaluate the impact of smoke-free public housing policies on health care visits associated with asthma, lower respiratory infections, and upper respiratory infections among children living in NYC Housing Authority (NYCHA) buildings

- **Study period**: November 1, 2015 – December 31, 2019, with intervention on July 30, 2018 (post-intervention period begins August 1, 2018)
 - 33 months of pre-policy data, 17 months of post-policy data

- **Design**: Treat SFH policy as a quasi-experiment by comparing changes over time in SHS-sensitive pediatric health outcomes among residents in NYCHA housing matched to residents in other types of subsidized housing in NYC
 - Other subsidized housing programs include other HUD-financed programs (e.g., the section 8 housing voucher program), property tax incentive programs tied to the provision of low-income housing, zoning initiatives, or other city and state housing subsidization programs
 - Secondary analysis: stratification by age group (ages 0-2, 3-6, 7-15)
Advantages to evaluating SFH policies in NYC

- NYC has a large population of residents living subsidized housing
 - NYC Housing Authority (NYCHA) is home to 1 in 17 New Yorkers
 - Over 500,000 New York residents participate in NYCHA affordable housing programs
- Detailed municipal datasets can be used to characterize local built environment

Source: NYU Furman Center, CoreData.nyc
Geocoding process for claims, housing data

- Residential address in Medicaid enrollment files
- Addresses of subsidized housing developments

NYCgbat, Geosupport Desktop Edition’s (GDE) batch geocoding application

Borough block lot (BBL)

NYC Primary Land Use Tax Lot Output (PLUTO) data

Census block group
Sample eligibility

Primary criteria for inclusion at baseline (November 1, 2015):

- Enrolled in Medicaid in NYC; and
- Between the ages of 0 and 15; and
- With a residential address mapped to public or other eligible subsidized housing BBL; and
- Not dually eligible for Medicaid and Medicare

<table>
<thead>
<tr>
<th></th>
<th>Unmatched</th>
<th>Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYCHA</td>
<td>72,072</td>
<td>71,114</td>
</tr>
<tr>
<td>Comparison</td>
<td>108,780</td>
<td>47,174</td>
</tr>
</tbody>
</table>
Outcomes

Outpatient (non-ED) and ED visits with any diagnosis code* indicating:

- Asthma
- Upper respiratory infections
- Lower respiratory infections

<table>
<thead>
<tr>
<th>Outcome</th>
<th>ICD-10 codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>J45</td>
</tr>
<tr>
<td>Upper respiratory infections</td>
<td>J01-J01.4, J01.8-J01.9, J02.0, J02.8-J02.9, J03.0, J03.8-J03.9, J04-J04.3, J05-J05.1, J06.0, J06.8-J06.9</td>
</tr>
</tbody>
</table>

*ICD-10 code lists adapted from Global Burden of Disease Study
Pre-intervention outcome trends (outpatient visits)

Quarterly outpatient visits per 1,000 Medicaid enrolled children (unmatched)

- **Asthma**
 - NYCHA: Dashed green line
 - Other Subsidized: Solid purple line
 - Other NYC: Dotted blue line

- **Upper Respiratory Infections**
 - NYCHA: Dashed green line
 - Other Subsidized: Solid purple line
 - Other NYC: Dotted blue line

- **Lower Respiratory Infections**
 - NYCHA: Dashed green line
 - Other Subsidized: Solid purple line
 - Other NYC: Dotted blue line

Data Source: NYU Langone Health
Covariates

Demographics: Age, sex, race/ethnicity

Medical history: Disability status, history of chronic condition

Medicaid enrollment history: Medicaid enrollment over pre-intervention period

Built environment and neighborhood characteristics: presence of high-rise in tax lot, census block group demographic and economic characteristics

*Primary Land Use Tax Lot Output data
Matching strategy

Matching conducted in multiple stages:

- 5:1 nearest neighbor Mahalanobis distance (MD) matching with replacement, within groups exactly matched on age category, race/ethnicity, sex, and disability status.
 - Within matched groups, MD matching conducted using other baseline covariates and a propensity score for living in a NYCHA development, based on all specified covariates (except age group)
- To improve balance within age subgroups, a LASSO procedure was used to identify important interactions between age group and covariates
- Propensity score model was re-estimated within matched data; overlap weights were calculated

Source: Yang 2021
Statistical analysis

- Matched difference-in-differences analysis, with policy introduction in July 2018
- GEE models with negative binomial distribution and first-order autoregressive correlation, robust standard errors, and overlap weights (generated from matching process)

\[
\log(Y_{i,t}) = \beta_0 + \beta_1 NYCHA_i + \beta_2 PostPolicy_t + \beta_3 NYCHA_i \times PostPolicy_t + \beta_4 \text{Covariates}_i + \epsilon_{i,t}
\]

Y is rate of visits for specified health outcome for individual *i* at time *t*

NYCHA is indicator for living in NYCHA development

PostPolicy is indicator for post-policy time period

Baseline covariates specified on prior slide (does not include months of Medicaid enrollment)
Additional analyses and robustness checks

Sensitivity analyses and alternative model specifications:
- Matching on quarterly rates of health outcomes in pre-intervention period
- Defining outcomes using primary diagnosis code
- Restricting analysis to non-movers over the follow-up period
- Restricting analysis to continuously enrolled children
- Including a 3-month washout period following policy introduction

Robustness checks:
- Evaluating associations in “placebo year” prior to policy introduction
- Examining injuries as a negative control outcome
Results: Descriptive characteristics of analytic sample

Standardized mean differences for key covariates in unmatched and matched sample
Results: DiD model coefficients

Table 3. Difference-in-differences coefficient estimates comparing post-intervention outcome rates between children in NYCHA and children in other subsidized housing, matched sample, New York City, 2015-2019

<table>
<thead>
<tr>
<th>Variable</th>
<th>IRR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient visits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>0.99 (0.94,1.04)</td>
<td>0.614</td>
</tr>
<tr>
<td>LRIs</td>
<td>0.94 (0.85,1.03)</td>
<td>0.195</td>
</tr>
<tr>
<td>URIs</td>
<td>1.05 (1.01,1.08)</td>
<td>0.007</td>
</tr>
<tr>
<td>ED visits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>1.05 (0.98,1.13)</td>
<td>0.143</td>
</tr>
<tr>
<td>LRIs</td>
<td>1.12 (0.98,1.27)</td>
<td>0.099</td>
</tr>
<tr>
<td>URIs</td>
<td>1.05 (0.99,1.11)</td>
<td>0.122</td>
</tr>
</tbody>
</table>

Notes: Bold indicates statistical significance at 0.05 level. IRR estimates and p-values correspond to coefficient associated with treatment*time interaction in negative binomial DiD regression model.
Results: Outcome trends in matched sample

Mean quarterly outpatient URI visits per 1,000 children, matched sample

Average quarterly visits

- NYCHA
- Comparison

Policy introduction
Secondary and sensitivity analyses

Results generally directionally similar across model specifications
- Restricting to primary diagnosis code -> policy associated with higher rates of asthma ED visits

Robustness checks yielded no statistically significant results
- No associations with health outcomes in placebo year
- No association with injuries as a negative control outcome

C = measured confounders; U = unmeasured confounders; N = negative control
Interpreting results

• Analysis does not suggest that policy is associated with lower rates of health care encounters for SHS-sensitive conditions among Medicaid-enrolled children in early post-policy period

• Statistically significant association with URIs is very small in magnitude
 – Difference between the groups (comparing the pre- and post-policy periods) was 0.8 visits per 1,000 children per month
Interpreting results

Qualitative research suggests ongoing challenges with policy implementation and enforcement

Lack of associations with health outcomes also consistent with air quality findings in early post-policy period
Interpreting results

Qualitative research suggests ongoing challenges with policy implementation and enforcement.

Lack of associations with health outcomes also consistent with air quality findings in early post-policy period.

Geometric mean cotinine levels in NYCHA housing hallways, compared to control hallways in Section 8 buildings.

End of study period

Source: Anastasiou 2023
Possible interpretations of counterintuitive findings (1)

Residual confounding or statistical artifact

- Potential for deterioration of housing environments over time or other secular trends that differentially impacted NYCHA and other subsidized housing developments over time (robustness checks designed to assess this)
- Differential churn/enrollment over time

Proportion of original sample enrolled over study period

![Graph showing the proportion of original sample enrolled over study period for NYCHA and comparison groups. The graph shows a downward trend from November 2015 to November 2019.]
Possible interpretations of counterintuitive findings (2)

One prior SFH evaluation found increases in PM$_{2.5}$ and SHS following policy introduction

Table 1. Average Daily Indoor PM$_{2.5}$ and Airborne Nicotine by Comparison and Adjusted Change in Mean Daily PM$_{2.5}$ and Airborne Nicotine Following SFH Implementation in Norfolk, VA

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Observed pre-SFH air quality</th>
<th>Observed post-SFH air quality</th>
<th>Adjusted change (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM$_{2.5}$ (µg/m3)</td>
<td>Nicotine (µg/m3)</td>
<td>PM$_{2.5}$ (µg/m3)</td>
</tr>
<tr>
<td>One month pre- and post-SFH</td>
<td>27.48</td>
<td>0.31</td>
<td>19.94</td>
</tr>
<tr>
<td>December 2017 vs. December 2018</td>
<td>18.92</td>
<td>0.36</td>
<td>25.18</td>
</tr>
</tbody>
</table>

CI = confidence interval. Observed values reflect measurements taken in common areas of five midrise buildings that implemented SFH in response to the HUD rule. Adjusted change in PM$_{2.5}$ and nicotine were estimated using linear mixed modeling with random site and time effects and included an additional building that did not implement SFH as a control.

Source: Plunk 2020
Strengths and limitations

• Strengths
 – Large population of individuals living in NYCHA or other subsidized housing developments – supported quasi-experimental study design
 – Multiple secondary and sensitivity analyses
 – Health outcome monitoring was coupled with air quality monitoring, qualitative research to contextualize findings

• Limitations
 – Limited post-policy period data
 – Potential for residual confounding
 – Comparison population likely very heterogeneous
 – Other subsidized housing developments may have had independent SFH policies
Conclusions

• In NYC, introduction of a smoke-free policy was not associated with lower rates of Medicaid claims for any outcomes in the early post-policy period

• Exposure to the smoke-free policy was associated with slightly higher rates of outpatient claims for URIs, though changes were very modest

• Air quality monitoring and qualitative research highlights need for ongoing health outcome research and policy implementation support
 – 3-year air quality data suggests that air nicotine is trending downward in NYCHA hallways compared to Section 8 control group, though trend is not apparent in nonsmoking apartments, stairwells
Next steps

Policy implications

• Addressing high levels of SHS exposure in multifamily housing remains a priority, given disparities in respiratory health outcomes across housing environments

• Policy priorities include supporting implementation of SFH policies, including improving access to cessation support and further engaging residents in implementation

• SFH is one aspect of a wider healthy homes agenda, which also includes investing to improve environmental and structural health of buildings

Research implications

• We are continuing to monitor air quality in building common areas over time

• Given evolving implementation landscape, we are also examining health outcome trends over longer post-policy period (through 2022)
 – Analyses underway exploring pediatric health outcomes, adult health outcomes (e.g., respiratory infections, CVD outcomes) using all-payer claims data

• Mixed methods evaluation, including focus on policy implementation process, has been key to contextualizing findings
Acknowledgments

Academic collaborators:
Lorna Thorpe (Co-PI)
Donna Shelley (Co-PI)
Terry Gordon (Co-I)
Brian Elbel (Co-I)
Sue Kaplan (Co-I)
Katarzyna Wyka (Co-I, CUNY)
Ana Rule (Co-I, JHU)
Elle Anastasiou
Albert Tovar
Emily Gill
Melanie Baker
Byoungjun Kim
Tabitha Julien
Rodrigo Arce

NYCHA:
Ann-Marie Flatley
Andrea Mata
Jyoti Parth

DOHMH:
Shannon Farley
John Jasek
Christine Domínguez
References

Thank you