THE LONG-TERM IMPACT OF EARLY-LIFE CIGARETTE TAXES ON ADULT PRE-PREGNANCY AND PRENATAL SMOKING

Lauren Hoehn-Velasco
Michael F. Pesko
Serena Phillips
Georgia State University

February 2021

*Research reported in this publication was supported by the National Institute on Drug Abuse of the National Institutes of Health under Award Number R01DA045016 (PI: Pesko). The views expressed herein are those of the authors and do not necessarily reflect the views of the National Institutes of Health.
• Research reported in this publication was supported by the National Institute on Drug Abuse of the National Institutes of Health under Award Number R01DA045016 (PI: Pesko). The views expressed herein are those of the authors and do not necessarily reflect the views of the National Institutes of Health.

• I have no other tobacco-related conflicts over the last 10 years.
INTRODUCTION
Motivation

- Do early-life public policies impact long-term health behaviors?
 - Literature has shown—prenatal and early-childhood environment crucial for human capital development*
 - If early-life influences also impact on long-run health behaviors (such as smoking)—provides another potential avenue for early-childhood health to persist into adulthood

*See Behrman and Rosenzweig (2004); Almond (2006); Bleakley (2007); Case et al. (2008); Case and Paxson (2009); Currie (2009); Bozzoli et al. (2009); Maluccio et al. (2009); Currie and Almond (2011); Almond et al. (2011); Beach et al. (2016); Hoynes et al. (2016); Hjort et al. (2017); Bhalotra et al. (2017); Butikofer et al. (2019); Hoehn-Velasco (2021).
• Do early-life public policies impact long-term health behaviors?

• Literature has shown–prenatal and early-childhood environment crucial for human capital development*

• If early-life influences also impact on long-run health behaviors (such as smoking)–provides another potential avenue for early-childhood health to persist into adulthood

*See Behrman and Rosenzweig (2004); Almond (2006); Bleakley (2007); Case et al. (2008); Case and Paxson (2009); Currie (2009); Bozzoli et al. (2009); Maluccio et al. (2009); Currie and Almond (2011); Almond et al. (2011); Beach et al. (2016); Hoynes et al. (2016); Hjort et al. (2017); Bhalotra et al. (2017); Butikofer et al. (2019); Hoehn-Velasco (2021).
Motivation

- Do early-life public policies impact long-term health behaviors?
 - Literature has shown—prenatal and early-childhood environment crucial for human capital development*
 - If early-life influences also impact on long-run health behaviors (such as smoking)—provides another potential avenue for early-childhood health to persist into adulthood

*See Behrman and Rosenzweig (2004); Almond (2006); Bleakley (2007); Case et al. (2008); Case and Paxson (2009); Currie (2009); Bozzoli et al. (2009); Maluccio et al. (2009); Currie and Almond (2011); Almond et al. (2011); Beach et al. (2016); Hoynes et al. (2016); Hjort et al. (2017); Bhalotra et al. (2017); Butikofer et al. (2019); Hoehn-Velasco (2021).
Main Question

• Do higher early-life cigarette taxes have long-term intergenerational links to adult smoking behavior?
 • Consider cigarette taxes in place during the mother’s in-utero development (faced by the grandmother)
 • Ask whether there is a long-term link between ↑ in-utero cigarette taxes & ↑ later-life adult prenatal smoking
Main Question

• Do higher early-life cigarette taxes have long-term intergenerational links to adult smoking behavior?
 • Consider cigarette taxes in place during the mother’s in-utero development (faced by the grandmother)
 • Ask whether there is a long-term link between ↑ in-utero cigarette taxes & ↑ later-life adult prenatal smoking
• Do higher early-life cigarette taxes have long-term intergenerational links to adult smoking behavior?
 • Consider cigarette taxes in place during the mother’s in-utero development (faced by the grandmother)
 • Ask whether there is a long-term link between ↑ in-utero cigarette taxes & ↑ later-life adult prenatal smoking
Why Prenatal Smoking?

- Prenatal smoking remains an ongoing public health threat
 - Raises the likelihood of pregnancy complications such as low birth weight \((\text{Almond et al.; 2005}) \)
 - Prenatal smoking during gestation may also have long-term implications for health and human capital development \((\text{Simon, 2016; Settele and Van Ewijk, 2018}) \)
 - Birth Certificates provide well-reported administrative record of prenatal smoking & include the mother’s own birth state
- Due to the adverse effects – prenatal period remains a crucial target for public health policy
• Prenatal smoking remains an ongoing public health threat
 • Raises the likelihood of pregnancy complications such as low birth weight \cite{Almond2005}
 • Prenatal smoking during gestation may also have long-term implications for health and human capital development \cite{Simon2016, Settele2018}
 • Birth Certificates provide well-reported administrative record of prenatal smoking & include the mother’s own birth state
• Due to the adverse effects–prenatal period remains a crucial target for public health policy
Prenatal smoking remains an ongoing public health threat

- Raises the likelihood of pregnancy complications such as low birth weight (Almond et al.; 2005)
- Prenatal smoking during gestation may also have long-term implications for health and human capital development (Simon, 2016; Settele and Van Ewijk, 2018)
- Birth Certificates provide well-reported administrative record of prenatal smoking & include the mother’s own birth state

- Due to the adverse effects—prenatal period remains a crucial target for public health policy
Why Prenatal Smoking?

- Prenatal smoking remains an ongoing public health threat
 - Raises the likelihood of pregnancy complications such as low birth weight (Almond et al.; 2005)
 - Prenatal smoking during gestation may also have long-term implications for health and human capital development (Simon, 2016; Settele and Van Ewijk, 2018)
 - Birth Certificates provide well-reported administrative record of prenatal smoking & include the mother’s own birth state
- Due to the adverse effects—prenatal period remains a crucial target for public health policy
Why Prenatal Smoking?

- Prenatal smoking remains an ongoing public health threat
 - Raises the likelihood of pregnancy complications such as low birth weight (*Almond et al.*, 2005)
 - Prenatal smoking during gestation may also have long-term implications for health and human capital development (*Simon*, 2016; *Settele and Van Ewijk*, 2018)
 - Birth Certificates provide well-reported administrative record of prenatal smoking & include the mother’s own birth state
- Due to the adverse effects–prenatal period remains a crucial target for public health policy
• **Prenatal smoking** from U.S. Birth Certificate records

• **Early-life taxes**: taxes in place during the mother’s own gestation (1965-2000)

• Use a fixed effects model:
 • Month-year of the current pregnancy’s conception & mother’s conception year
 • Mother’s birth state & current residence state
 • Linear trends for the mother’s birth state and conception year
• Prenatal smoking from U.S. Birth Certificate records
• Early-life taxes: taxes in place during the mother’s own gestation (1965-2000)
• Use a fixed effects model:
 • Month-year of the current pregnancy’s conception & mother’s conception year
 • Mother’s birth state & current residence state
 • Linear trends for the mother’s birth state and conception year
• **Prenatal smoking** from U.S. Birth Certificate records

• **Early-life taxes**: taxes in place during the mother’s own gestation (1965-2000)

• Use a fixed effects model:
 • Month-year of the current pregnancy’s conception & mother’s conception year
 • Mother’s birth state & current residence state
 • Linear trends for the mother’s birth state and conception year
• **Findings:** ↑ state-level in-utero cigarette taxes ↓ prenatal smoking in adulthood (for first-time mothers)

 • 1% increase in early-life cigarette tax is associated with a reduction in the probability of prenatal smoking by 0.24 percent and pre-pregnancy smoking by 0.21 percent

 • 1$ increase in the cigarette tax linked to a 2.1 percentage point decline in prenatal smoking and a 2.7 percentage point decline in pre-pregnancy smoking
Findings: ↑ state-level in-utero cigarette taxes ↓ prenatal smoking in adulthood (for first-time mothers)

- 1% increase in early-life cigarette tax is associated with a reduction in the probability of prenatal smoking by 0.24 percent and pre-pregnancy smoking by 0.21 percent

- 1$ increase in the cigarette tax linked to a 2.1 percentage point decline in prenatal smoking and a 2.7 percentage point decline in pre-pregnancy smoking
Findings: ↑ state-level in-utero cigarette taxes ↓ prenatal smoking in adulthood (for first-time mothers)

- 1% increase in early-life cigarette tax is associated with a reduction in the probability of prenatal smoking by 0.24 percent and pre-pregnancy smoking by 0.21 percent
- 1$ increase in the cigarette tax linked to a 2.1 percentage point decline in prenatal smoking and a 2.7 percentage point decline in pre-pregnancy smoking
Mechanisms

• *Human capital formation* and adult *socioeconomic status*
 1. Higher cigarette tax in the years leading up to the mother’s in-utero exposure changes the likelihood of:
 2. SES/human capital also linked to lower prenatal smoking

• *Multigenerational effects* on health and health behaviors

 • Infant health:
 1. ↓ very premature
 2. ↓ very low birth weight
• *Human capital formation* and adult *socioeconomic status*

 1. Higher cigarette tax in the years leading up to the mother’s in-utero exposure changes the likelihood of:

 1.1 ↑ *college* degree attainment
 1.2 ↑ *married* at first delivery
 1.3 ↓ *WIC* receipt

 2. SES/human capital also linked to lower prenatal smoking

• *Multigenerational effects* on health and health behaviors

 • Infant health:

 1. ↓ very premature
 2. ↓ very low birth weight

 .
Mechanisms

• Human capital formation and adult socioeconomic status
 1. Higher cigarette tax in the years leading up to the mother’s in-utero exposure changes the likelihood of:
 1.1 ↑ college degree attainment
 1.2 ↑ married at first delivery
 1.3 ↓ WIC receipt
 2. SES/human capital also linked to lower prenatal smoking

• Multigenerational effects on health and health behaviors

 • Infant health:
 1. ↓ very premature

 2. ↓ very low birth weight
Human capital formation and adult socioeconomic status

1. Higher cigarette tax in the years leading up to the mother’s in-utero exposure changes the likelihood of:
 1.1 ↑ college degree attainment
 1.2 ↑ married at first delivery
 1.3 ↓ WIC receipt

2. SES/human capital also linked to lower prenatal smoking

Multigenerational effects on health and health behaviors

Mother health:

1. ↓ pre-pregnancy BMI
2. ↓ diabetes
3. ↑ breastfeeding

Infant health:

1. ↓ very premature
2. ↓ very low birth weight
Mechanisms

- *Human capital formation* and adult *socioeconomic status*

 1. Higher cigarette tax in the years leading up to the mother’s in-utero exposure changes the likelihood of:
 1.1 ↑ college degree attainment
 1.2 ↑ married at first delivery
 1.3 ↓ WIC receipt

 2. SES/human capital also linked to lower prenatal smoking

- *Multigenerational effects* on health and health behaviors

 - **Mother health:**
 1. ↓ pre-pregnancy BMI
 2. ↓ diabetes
 3. ↑ breastfeeding

 - **Infant health:**
 1. ↓ very premature
 2. ↓ very low birth weight
Robust to a host of checks, except cohort-specific effect

Two notable cohort effects appear in the data:

1. Contemporary and teenage cigarette taxes: influential for older cohorts, those with first child during the late 1990s and early 2000s
2. Early-life cigarette taxes appear important after 2006

Higher cigarette taxes may have disrupted a generation of smokers in early life making these individuals less responsive to contemporary taxes today

Potential factor contributing to the decline in contemporary cigarette tax responsiveness
Robust to a host of checks, except cohort-specific effect

Two notable *cohort effects* appear in the data:

1. *Contemporary* and *teenage* cigarette taxes: influential for older cohorts, those with first child during the *late 1990s and early 2000s*
2. *Early-life* cigarette taxes appear important *after 2006*

Higher cigarette taxes may have disrupted a generation of smokers in *early life* making these individuals less responsive to contemporary taxes today

Potential factor contributing to the decline in contemporary cigarette tax responsiveness
Is this a Cohort Effect?

• Robust to a host of checks, except cohort-specific effect

• Two notable cohort effects appear in the data:

 1. Contemporary and teenage cigarette taxes: influential for older cohorts, those with first child during the late 1990s and early 2000s
 2. Early-life cigarette taxes appear important after 2006

• Higher cigarette taxes may have disrupted a generation of smokers in early life making these individuals less responsive to contemporary taxes today

• Potential factor contributing to the decline in contemporary cigarette tax responsiveness
• Robust to a host of checks, except cohort-specific effect

• Two notable *cohort effects* appear in the data:

 1. Contemporary and teenage cigarette taxes: influential for older cohorts, those with first child during the late 1990s and early 2000s
 2. Early-life cigarette taxes appear important after 2006

• *Higher cigarette taxes may have disrupted a generation of smokers in early life* making these individuals less responsive to contemporary taxes today

• Potential factor contributing to the decline in contemporary cigarette tax responsiveness
Robust to a host of checks, except cohort-specific effect

Two notable *cohort effects* appear in the data:

1. Contemporary and teenage cigarette taxes: influential for older cohorts, those with first child during the late 1990s and early 2000s
2. Early-life cigarette taxes appear important after 2006

Higher cigarette taxes may have disrupted a generation of smokers in early life making these individuals less responsive to contemporary taxes today

Potential factor contributing to the decline in contemporary cigarette tax responsiveness
LITERATURE
Cigarette Taxes and Smoking

1. Literature studying cigarette taxes and smoking in pregnancy: Evans and Ringel (1999); Gruber and Koszegi (2001); Bradford (2003); Colman et al. (2003); Levy and Meara (2006); Simon (2016); Adams et al. (2012); Dennett (2020).

3. Long-term Impacts of Cigarette Taxes:
 3.1 Generally: Darden and Gilleskie (2016); Darden (2017); Settele and Van Ewijk (2018); Darden et al. (2018); Catalano and Gilleskie (2021).
 3.2 Teenage taxes: Friedson and Rees (2020), Friedson et al. (2021b), and Friedson et al. (2021a).

4. Prenatal and early childhood important for adult human capital health
 4.1 Behrman and Rosenzweig, 2004; Almond, 2006; Bleakley, 2007; Case et al., 2008; Case and Paxson, 2009; Currie, 2009; Bozzioli et al., 2009; Maluccio et al., 2009; Currie and Almond, 2011; Almond et al., 2011; Beach et al., 2016; Hoynes et al., 2016; Hjort et al., 2017; Bhalotra et al., 2017; Butikofer et al., 2019; Hoehn-Velasco, 2021.
1. Literature studying cigarette taxes and smoking in pregnancy: Evans and Ringel (1999); Gruber and Koszegi (2001); Bradford (2003); Colman et al. (2003); Levy and Meara (2006); Simon (2016); Adams et al. (2012); Dennett (2020)

2. Cigarette taxes & infant/child health/achievement: Simon, 2016; Settele and Van Ewijk, 2018

3. Long-term Impacts of Cigarette Taxes:
 3.1 Generally: Darden and Gilleskie (2016); Darden (2017); Settele and Van Ewijk (2018); Darden et al. (2018); Catalano and Gilleskie (2021).
 3.2 Teenage taxes: Friedson and Rees (2020), Friedson et al. (2021b), and Friedson et al. (2021a)

4. Prenatal and early childhood important for adult human capital health
 4.1 Behrman and Rosenzweig, 2004; Almond, 2006; Bleakley, 2007; Case et al., 2008; Case and Paxson, 2009; Currie, 2009; Bozzoli et al., 2009; Maluccio et al., 2009; Currie and Almond, 2011; Almond et al., 2011; Beach et al., 2016; Hoynes et al., 2016; Hjort et al., 2017; Bhalotra et al., 2017; Butikofer et al., 2019; Hoehn-Velasco, 2021
1. Literature studying cigarette taxes and smoking in pregnancy: Evans and Ringel (1999); Gruber and Koszegi (2001); Bradford (2003); Colman et al. (2003); Levy and Meara (2006); Simon (2016); Adams et al. (2012); Dennett (2020)

2. Cigarette taxes & infant/child health/achievement: Simon, 2016; Settele and Van Ewijk, 2018

3. Long-term Impacts of Cigarette Taxes:
 3.1 Generally: Darden and Gilleskie (2016); Darden (2017); Settele and Van Ewijk (2018); Darden et al. (2018); Catalano and Gilleskie (2021).
 3.2 Teenage taxes: Friedson and Rees (2020), Friedson et al. (2021b), and Friedson et al. (2021a)

4. Prenatal and early childhood important for adult human capital health
 4.1 Behrman and Rosenzweig, 2004; Almond, 2006; Bleakley, 2007; Case et al., 2008; Case and Paxson, 2009; Currie, 2009; Bozzoli et al., 2009; Maluccio et al., 2009; Currie and Almond, 2011; Almond et al., 2011; Beach et al., 2016; Hoynes et al., 2016; Hjort et al., 2017; Bhalotra et al., 2017; Butikofer et al., 2019; Hoehn-Velasco, 2021
Background
Background

Why would early-life taxes influence adult smoking?
Why would early-life taxes influence adult smoking?

- **Reason 1:** Higher cigarette taxes during the mother’s in-utero development will affect the grandmother’s prenatal smoking.

Prenatal smoking:

- Impairs early health and human capital development (*Settele and Van Ewijk* (2018))
- Increases infant risk factors, such as low birth weight (*Almond et al.*, 2005)
Reason 1: Higher cigarette taxes during the mother’s in-utero development will affect the grandmother’s prenatal smoking.

Prenatal smoking:

- Impairs early health and human capital development (Settele and Van Ewijk (2018))
- Increases infant risk factors, such as low birth weight (Almond et al., 2005)
• **Reason 1:** Higher cigarette taxes during the mother’s in-utero development will affect the grandmother’s prenatal smoking.

Prenatal smoking:

- Impairs *early health and human capital development* (*Settele and Van Ewijk* (2018))
- Increases infant risk factors, such as low birth weight (*Almond et al.*, 2005)
Reason 2: In-utero and childhood exposure to nicotine may affect the individual’s general proclivity towards nicotine-containing products

- Nicotine exposure has been shown to affect rodent brain development; which may be generalizable to humans (Lv et al., 2008; England et al., 2015; HHS, 2016, 2018; Romoli et al., 2019)
- Reducing exposure to nicotine during pregnancy may disrupt a generation of smokers
Why would early-life taxes influence adult smoking?

- **Reason 2:** In-utero and childhood exposure to nicotine may affect the individual’s general proclivity towards nicotine-containing products
 - Nicotine exposure has been shown to affect rodent brain development; which may be generalizable to humans (*Lv et al.*, 2008; *England et al.*, 2015; *HHS*, 2016, 2018; *Romoli et al.*, 2019)
 - Reducing exposure to nicotine during pregnancy may disrupt a generation of smokers
• **Reason 2:** In-utero and childhood exposure to nicotine may affect the individual’s general **proclivity towards nicotine-containing products**

 • Nicotine exposure has been shown to affect rodent brain development; which may be generalizable to humans (**Lv et al., 2008; England et al., 2015; HHS, 2016, 2018; Romoli et al., 2019**)

 • Reducing exposure to nicotine during pregnancy may disrupt a generation of smokers
• **Reason 3:** Higher cigarette taxes will affect smoking in the home environment

 • Children who grow up in households with smoking parents more likely to smoke in adulthood (*Bantle and Haisken-DeNew, 2002; Gohlmann et al., 2010*)

 • Parental health behaviors causally impact the health behaviors of adult children (*Darden and Gilleskie, 2016; Fadlon and Nielsen, 2019*)
Why would early-life taxes influence adult smoking?

• **Reason 3:** Higher cigarette taxes will affect smoking in-home environment
 - Children who grow up in households with smoking parents more likely to smoke in adulthood (*Bantle and Haisken-DeNew, 2002; Gohlmann et al., 2010*)
 - Parental health behaviors causally impact the health behaviors of adult children (*Darden and Gilleskie, 2016; Fadlon and Nielsen, 2019*)
• **Reason 3:** Higher cigarette taxes will affect smoking in-home environment

 • Children who grow up in households with smoking parents more likely to smoke in adulthood (*Bantle and Haisken-DeNew, 2002; Gohlmann et al., 2010*)

 • Parental health behaviors causally impact the health behaviors of adult children (*Darden and Gilleskie, 2016; Fadlon and Nielsen, 2019*)
Why would early-life taxes influence adult smoking?

• **Reason 4:** Higher cigarette taxes shape the state-level cultural environment

 • Mother’s beliefs about smoking shaped by parents, peers, and acquaintances
 • Cultural transmission of smoking behaviors (Christopoulou and Lillard, 2015; Rodriguez-Planas and Sanz-de Galdeano, 2019; Kleinjans and Gill, 2020; Catalano and Gilleskie, 2021)
 • Childhood exposure to a permissive smoking culture may play a role in shaping health behaviors
Reason 4: Higher cigarette taxes shape the state-level cultural environment

- Mother’s beliefs about smoking shaped by parents, peers, and acquaintances
- Cultural transmission of smoking behaviors (Christopoulou and Lillard, 2015; Rodriguez-Planas and Sanz-de Galdeano, 2019; Kleinjans and Gill, 2020; Catalano and Gilleskie, 2021)
- Childhood exposure to a permissive smoking culture may play a role in shaping health behaviors
• **Reason 4:** Higher cigarette taxes shape the state-level cultural environment

 • Mother’s beliefs about smoking shaped by parents, peers, and acquaintances

 • Cultural transmission of smoking behaviors (*Christopoulou and Lillard*, 2015; *Rodriguez-Planas and Sanz-de Galdeano*, 2019; *Kleinjans and Gill*, 2020; *Catalano and Gilleskie*, 2021)

 • Childhood exposure to a permissive smoking culture may play a role in shaping health behaviors
• **Reason 4:** Higher cigarette taxes shape the **state-level cultural environment**

 • Mother’s beliefs about smoking shaped by parents, peers, and acquaintances

 • Cultural transmission of smoking behaviors (*Christopoulou and Lillard, 2015; Rodriguez-Planas and Sanz-de Galdeano, 2019; Kleinjans and Gill, 2020; Catalano and Gilleskie, 2021*)

 • Childhood exposure to a permissive smoking culture may play a role in shaping health behaviors
• **Reason 5:** Cigarette taxes raised during early childhood may be *earmarked for public expenditures* on education or other beneficial programs (*Lav, 2002; Evans and Zhang, 2007*)

 • If this is the case—omitted causal factor may be educational expenditures or public spending on health
 • We test for this in the mechanisms section
Reason 5: Cigarette taxes raised during early childhood may be earmarked for public expenditures on education or other beneficial programs (Lav, 2002; Evans and Zhang, 2007)

- If this is the case—omitted causal factor may be educational expenditures or public spending on health
- We test for this in the mechanisms section
• **Reason 5:** Cigarette taxes raised during early childhood may be earmarked for public expenditures on education or other beneficial programs (*Lav, 2002; Evans and Zhang, 2007*)
 - If this is the case—omitted causal factor may be educational expenditures or public spending on health
 - We test for this in the mechanisms section
Why would early-life taxes influence adult smoking?

1. In-utero exposure and human capital formation
2. Nicotine receptors in the developing brain
3. Smoking culture at home
4. Smoking culture in state
5. Earmarked expenditures
BACKGROUND

Cigarette Taxes over Time
Information presented above for the average cigarette taxes, the sum of the state-level taxes plus the federal tax. Real cigarette taxes are CPI-adjusted and reported in 2020 dollars. The green dashed line represents the inflation-adjusted year-over-year change in the nominal tax rate.
 - Natality Detail File from the CDC and NVSS
 - Revised version has information on smoking at three points in time (2009+)
 - Primarily focus on revised version

2. *Cigarette Excise Taxes*
 - State and federal excise taxes from the CDC’s Tax Burden on Tobacco
 - Use cigarette taxes in place at the conception of mother, during teen years (age 13), and at the conception of the newborn

3. Additional data sources: for tobacco and state-level policy controls listed in Appendix
 - Natality Detail File from the CDC and NVSS
 - Revised version has information on smoking at three points in time (2009+)
 - Primarily focus on revised version

2. *Cigarette Excise Taxes*
 - State and federal excise taxes from the CDC’s Tax Burden on Tobacco
 - Use cigarette taxes in place at the conception of mother, during teen years (age 13), and at the conception of the newborn

3. Additional data sources: for tobacco and state-level policy controls listed in Appendix
 - Natality Detail File from the CDC and NVSS
 - Revised version has information on smoking at three points in time (2009+)
 - Primarily focus on revised version

2. *Cigarette Excise Taxes*
 - State and federal excise taxes from the CDC’s Tax Burden on Tobacco
 - Use cigarette taxes in place at the conception of mother, during teen years (age 13), and at the conception of the newborn

3. Additional data sources: for tobacco and state-level policy controls listed in Appendix
• **Main outcomes:**

 1. Prenatal Smoking
 - Any smoking during the three trimesters of pregnancy
 2. Smoking pre-pregnancy
 3. Quantity of Cigarettes
 - Number of cigarettes smoked during the three trimesters of pregnancy
• **Main outcomes:**

1. **Prenatal Smoking**
 - Any smoking during the three trimesters of pregnancy
2. **Smoking pre-pregnancy**
3. **Quantity of Cigarettes**
 - Number of cigarettes smoked during the three trimesters of pregnancy

• **Main Sample:** first deliveries to adults (18-49) occurring over 2009-2020
2003 Birth Certificate Revision

Table: Mother Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>29a. Date of First Prenatal Care Visit</td>
<td>MM/DD/YYYY (No Prenatal Care)</td>
</tr>
<tr>
<td>29b. Date of Last Prenatal Care Visit</td>
<td>MM/DD/YYYY (If none, enter AD.)</td>
</tr>
<tr>
<td>30. Total Number of Prenatal Visits for this Pregnancy</td>
<td></td>
</tr>
<tr>
<td>31. Mother's Height (feet/inches)</td>
<td></td>
</tr>
<tr>
<td>32. Mother's Prepregnancy Weight (pounds)</td>
<td></td>
</tr>
<tr>
<td>33. Mother's Weight at Delivery (pounds)</td>
<td></td>
</tr>
<tr>
<td>34. Did Mother Get WIC Food for Herself During this Pregnancy?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>35. Number of Previous Live Births (Do not include this child)</td>
<td></td>
</tr>
<tr>
<td>35a. Now Living</td>
<td>Number ____</td>
</tr>
<tr>
<td>35b. Now Dead</td>
<td>Number ____</td>
</tr>
<tr>
<td>35c. Date of Last Live Birth</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>36. Number of Other Pregnancy Outcomes</td>
<td></td>
</tr>
<tr>
<td>36a. Other Outcomes</td>
<td>Number ____</td>
</tr>
<tr>
<td>37. Cigarette Smoking Before and During Pregnancy</td>
<td></td>
</tr>
<tr>
<td>Average number of cigarettes or packs of cigarettes smoked per day</td>
<td></td>
</tr>
<tr>
<td>Three Months Before Pregnancy</td>
<td># of cigarettes OR # of packs</td>
</tr>
<tr>
<td>First Three Months of Pregnancy</td>
<td></td>
</tr>
<tr>
<td>Second Three Months of Pregnancy</td>
<td></td>
</tr>
<tr>
<td>Third Trimester of Pregnancy</td>
<td></td>
</tr>
<tr>
<td>38. Principal Source of Payment for this Delivery</td>
<td></td>
</tr>
<tr>
<td>□ Private Insurance</td>
<td></td>
</tr>
<tr>
<td>□ Medicaid</td>
<td></td>
</tr>
<tr>
<td>□ Self-pay</td>
<td></td>
</tr>
<tr>
<td>□ Other (Specify)</td>
<td></td>
</tr>
<tr>
<td>39. Date Last Normal Menstrual Period Began</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>40. Mother's Medical Record Number</td>
<td></td>
</tr>
</tbody>
</table>
Empirical Strategy

For individual i residing in county j and state s_c at time t who was born in state s_b this specification appears as:

$$\text{Smoking}_{i,j,s_c,s_b,t} = \alpha + \beta \text{Early-life Tax}_{s_b(t-\text{age}-1)} + \mathbf{x}'_{i,j,s_c,s_b,t} \gamma + a_{s_c} + \delta_{s_b} + \eta(t-g) + \nu(t-\text{age}-1) + \phi_{s_b}(t-\text{age}-1) + \epsilon_{i,j,s_c,s_b,t}$$ \hspace{1cm} (1)

- **Smoking$_{i,j,s_c,s_b,t}$** - smoking behavior for individual i
- **Early-life Tax$_{s_b(t-\text{age}-1)}$** - real cigarette tax in the mother’s birth state s_b & conception year ($t-\text{age}-1$)
- **$\mathbf{x}'_{i,j,s_c,s_b,t}$** - demographic and policy controls
- **Fixed effects and trends**
- **$\epsilon_{i,j,s_c,s_b,t}$** is the standard error (clustered at the birth state level)
Empirical Strategy

For individual i residing in county j and state s_c at time t who was born in state s_b this specification appears as:

$$\text{Smoking}_{i,j,s_c,s_b,t} = \alpha + \beta \text{Early-life Tax}_{s_b(t-\text{age}-1)} + \mathbf{X}'_{i,j,s_c,s_b,t} \gamma + a_{s_c} + \delta_{s_b}$$

$$+ \eta(t-g) + \nu(t-\text{age}-1) + \phi_{s_b}(t - \text{age} - 1) + \epsilon_{i,j,s_c,s_b,t}$$

1. **Smoking**$_{i,j,s_c,s_b,t}$ - smoking behavior for individual i
2. **Early-life Tax**$_{s_b(t-\text{age}-1)}$ - real cigarette tax in the mother’s birth state s_b & conception year $(t - \text{age} - 1)$
3. $\mathbf{X}'_{i,j,s_c,s_b,t} \gamma$ are demographic and policy controls
4. Fixed effects and trends
5. $\epsilon_{i,j,s_c,s_b,t}$ is the standard error (clustered at the birth state level)
Empirical Strategy

For individual i residing in county j and state s_c at time t who was born in state s_b this specification appears as:

\[
\text{Smoking}_{i,j,s_c,s_b,t} = \alpha + \beta \text{Early-life Tax}_{s_b(t-\text{age}-1)} + \mathbf{x}'_{i,j,s_c,s_b,t} \gamma + a_{s_c} + \delta_{s_b} \\
+ \eta(t-g) + \nu(t-\text{age}-1) + \phi_{s_b}(t-\text{age}-1) + \epsilon_{i,j,s_c,s_b,t}
\]

(1)

- **Smoking$_{i,j,s_c,s_b,t}$** - smoking behavior for individual i
- **Early-life Tax$_{s_b(t-\text{age}-1)}$** - real cigarette tax in the mother’s birth state s_b & conception year ($t - \text{age} - 1$)
- **$\mathbf{x}'_{i,j,s_c,s_b,t} \gamma$** are demographic and policy controls
 1. Demographic controls: race/ethnicity
 2. Tobacco control: contemporary state-level cigarette tax, county-level Tobacco 21 laws, share of the population covered by indoor vaping and smoking restrictions, standardized ecigarette tax, and e-cigarette minimum purchasing age indicator
 3. General policy: ACA Medicaid expansion, state-level minimum wage and beer tax, county-level unemployment rate, median income, poverty rate, binary variables for state-level recreational & medical marijuana legalization and opioid PDMP

Fixed effects and trends

$\epsilon_{i,j,s_c,s_b,t}$ is the standard error (clustered at the birth state level)

Hoehn-Velasco et al /two.pnum/one.pnum / /three.pnum/five.pnum
For individual i residing in county j and state s_c at time t who was born in state s_b this specification appears as:

\[
\text{Smoking}_{i,j,s_c,s_b,t} = \alpha + \beta \text{Early-life Tax}_{s_b(t-\text{age}-1)} + \mathbf{X}'_{i,j,s_c,s_b,t}\gamma + a_{s_c} + \delta_{s_b} \\
+ \eta(t-g) + \nu(t-\text{age}-1) + \phi_{s_b}(t - \text{age} - 1) + \epsilon_{i,j,s_c,s_b,t} \tag{1}
\]

- **Smoking$_{i,j,s_c,s_b,t}$** - smoking behavior for individual i
- **Early-life Tax$_{s_b(t-\text{age}-1)}$** – real cigarette tax in the mother’s birth state s_b & conception year ($t - \text{age} - 1$)
- **$\mathbf{X}'_{i,j,s_c,s_b,t}\gamma$** are demographic and policy controls
- **Fixed effects and trends**
- **$\epsilon_{i,j,s_c,s_b,t}$** is the standard error (clustered at the birth state level)
Empirical Strategy

For individual i residing in county j and state s_c at time t who was born in state s_b this specification appears as:

\[
\text{Smoking}_{i,j,s_c,s_b,t} = \alpha + \beta \text{Early-life Tax}_{s_b(t-\text{age}-1)} + \mathbf{x}'_{i,j,s_c,s_b,t} \gamma + a_{s_c} + \delta_{s_b} \\
+ \eta(t-g) + \nu(t-\text{age}-1) + \phi_{s_b}(t-\text{age}-1) + \epsilon_{i,j,s_c,s_b,t}
\]

(1)

- Smoking$_{i,j,s_c,s_b,t}$—smoking behavior for individual i
- Early-life Tax$_{s_b(t-\text{age}-1)}$—real cigarette tax in the mother’s birth state s_b & conception year ($t - \text{age} - 1$)
- $\mathbf{x}'_{i,j,s_c,s_b,t} \gamma$ are demographic and policy controls
- Fixed effects and trends
 1. Current state a_{s_c} and birth state δ_{s_b}
 2. Infant month-year of conception $\eta(t-g)$, mother’s conception year, $\nu(t-\text{age}-1)$ and $\phi_{s_b}(t-\text{age}-1)$ linear time trends
- $\epsilon_{i,j,s_c,s_b,t}$ is the standard error (clustered at the birth state level)
For individual i residing in county j and state s_c at time t who was born in state s_b this specification appears as:

$$\text{Smoking}_{i,j,s_c,s_b,t} = \alpha + \beta \text{Early-life Tax}_{s_b(t-\text{age}-1)} + x'_{i,j,s_c,s_b,t} \gamma + a_{s_c} + \delta_{s_b}$$

$$+ \eta(t-g) + \nu(t-\text{age}-1) + \phi_{s_b}(t - \text{age} - 1) + \epsilon_{i,j,s_c,s_b,t}$$

1. Smoking$_{i,j,s_c,s_b,t}$—smoking behavior for individual i
2. Early-life Tax$_{s_b(t-\text{age}-1)}$—real cigarette tax in the mother’s birth state s_b & conception year $(t - \text{age} - 1)$
3. $x'_{i,j,s_c,s_b,t}$ are demographic and policy controls
4. Fixed effects and trends
 1. Current state a_{s_c} and birth state δ_{s_b}
 2. Infant month-year of conception $\eta(t-g)$, mother’s conception year, $\nu(t-\text{age}-1)$ and $\phi_{s_b}(t - \text{age} - 1)$ linear time trends
5. $\epsilon_{i,j,s_c,s_b,t}$ is the standard error (clustered at the birth state level)
Empirical Strategy

For individual i residing in county j and state s_c at time t who was born in state s_b this specification appears as:

$$\text{Smoking}_{i,j,s_c,s_b,t} = \alpha + \beta \text{Early-life Tax}_{s_b(t-\text{age}-1)} + \mathbf{x}'_{i,j,s_c,s_b,t} \gamma + a_{s_c} + \delta_{s_b}$$

$$+ \eta(t-g) + \nu(t-\text{age}-1) + \phi_{s_b}(t-\text{age}-1) + \epsilon_{i,j,s_c,s_b,t}$$

1. $\text{Smoking}_{i,j,s_c,s_b,t}$ – smoking behavior for individual i
2. $\text{Early-life Tax}_{s_b(t-\text{age}-1)}$ – real cigarette tax in the mother’s birth state s_b & conception year $(t - \text{age} - 1)$
3. $\mathbf{x}'_{i,j,s_c,s_b,t} \gamma$ are demographic and policy controls
4. Fixed effects and trends
5. $\epsilon_{i,j,s_c,s_b,t}$ is the standard error (clustered at the birth state level)
Main Results
Effect of Early-life Taxes on Smoking

Table: Effect of Early-life Taxes on Smoking

<table>
<thead>
<tr>
<th>At-Conception Cigarette Tax</th>
<th>1(Any Pre-Pregnancy Smoking)</th>
<th>1(Any Prenatal Smoking)</th>
<th>Prenatal Per Day Cigarettes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Observations</td>
<td>9,466,192</td>
<td>9,466,192</td>
<td>9,466,192</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.053</td>
<td>0.069</td>
<td>0.071</td>
</tr>
<tr>
<td>Mean Dependent</td>
<td>0.104</td>
<td>0.104</td>
<td>0.104</td>
</tr>
<tr>
<td>Baseline FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Controls</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maternal Birth State Trends</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Notes:
Elasticities reported. Robust standard errors clustered at the level of the mother’s birth state.
***, **, * represent statistical significance at 1, 5 and 10 percent levels.
Effect of Early-life Taxes on Smoking

<table>
<thead>
<tr>
<th></th>
<th>1(Any Pre-Pregnancy Smoking)</th>
<th>1(Any Prenatal Smoking)</th>
<th>Prenatal Per Day Cigarettes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>At-Conception Cigarette Tax</td>
<td>-0.3115**</td>
<td>-0.3050**</td>
<td>-0.2126***</td>
</tr>
<tr>
<td></td>
<td>(0.1414)</td>
<td>(0.1471)</td>
<td>(0.0707)</td>
</tr>
<tr>
<td>Observations</td>
<td>9,466,192</td>
<td>9,466,192</td>
<td>9,466,192</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.053</td>
<td>0.069</td>
<td>0.071</td>
</tr>
<tr>
<td>Mean Dependent</td>
<td>0.104</td>
<td>0.104</td>
<td>0.104</td>
</tr>
<tr>
<td>Baseline FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Controls</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maternal Birth State Trends</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Elasticities reported. Robust standard errors clustered at the level of the mother’s birth state. ***, **, * represent statistical significance at 1, 5 and 10 percent levels.
Effect of Early-life Taxes on Smoking

Table: Elasticities of At-Conception Cigarette Tax on Smoking Outcomes

<table>
<thead>
<tr>
<th></th>
<th>1(Any Pre-Pregnancy Smoking)</th>
<th>1(Any Prenatal Smoking)</th>
<th>Prenatal Per Day Cigarettes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>At-Conception Cigarette Tax</td>
<td>-0.3115** (0.1414)</td>
<td>-0.3050** (0.1471)</td>
<td>-0.2126*** (0.0707)</td>
</tr>
<tr>
<td>Observations</td>
<td>9,466,192</td>
<td>9,466,192</td>
<td>9,466,192</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.053</td>
<td>0.069</td>
<td>0.071</td>
</tr>
<tr>
<td>Mean Dependent</td>
<td>0.104</td>
<td>0.104</td>
<td>0.104</td>
</tr>
<tr>
<td>Baseline FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Controls</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maternal Birth State Trends</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Elasticities reported. Robust standard errors clustered at the level of the mother’s birth state. ***,**, * represent statistical significance at 1, 5 and 10 percent levels.
Robustness
Contemporary, Teenage, and Early-life Cigarette Taxes

Panel A: Main Sample, Adding Teenage and Contemporary Taxes

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(Any Pre-Pregnancy Smoking)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(Any Prenatal Smoking)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prenatal Per Day Cigarettes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At-Conception Cigarette Tax</td>
<td>-0.3403**</td>
<td>-0.3163**</td>
<td>-0.2092**</td>
<td>-0.4001**</td>
<td>-0.3713**</td>
<td>-0.2353**</td>
<td>-0.4472**</td>
<td>-0.4256**</td>
<td>-0.2423***</td>
</tr>
<tr>
<td></td>
<td>(0.1444)</td>
<td>(0.1425)</td>
<td>(0.0686)</td>
<td>(0.1713)</td>
<td>(0.1710)</td>
<td>(0.0834)</td>
<td>(0.1600)</td>
<td>(0.1657)</td>
<td>(0.0831)</td>
</tr>
<tr>
<td>Teenage (Age 13) Cigarette Tax</td>
<td>0.0997*</td>
<td>0.0895</td>
<td>0.0153</td>
<td>0.1151*</td>
<td>0.1023</td>
<td>0.0223</td>
<td>0.1086*</td>
<td>0.0952</td>
<td>0.0365</td>
</tr>
<tr>
<td></td>
<td>(0.0603)</td>
<td>(0.0640)</td>
<td>(0.0348)</td>
<td>(0.0649)</td>
<td>(0.0688)</td>
<td>(0.0352)</td>
<td>(0.0628)</td>
<td>(0.0660)</td>
<td>(0.0386)</td>
</tr>
<tr>
<td>Present-Day Cigarette Tax</td>
<td>0.2316**</td>
<td>0.1433**</td>
<td>0.1621*</td>
<td>0.2493**</td>
<td>0.1336**</td>
<td>0.1585</td>
<td>0.2362**</td>
<td>0.0549</td>
<td>0.0784</td>
</tr>
<tr>
<td></td>
<td>(0.1002)</td>
<td>(0.0639)</td>
<td>(0.0881)</td>
<td>(0.1111)</td>
<td>(0.0681)</td>
<td>(0.1008)</td>
<td>(0.1156)</td>
<td>(0.0728)</td>
<td>(0.1027)</td>
</tr>
<tr>
<td>Observations</td>
<td>9,466,192</td>
<td>9,466,192</td>
<td>9,466,192</td>
<td>9,470,171</td>
<td>9,470,171</td>
<td>9,470,171</td>
<td>9,456,678</td>
<td>9,456,678</td>
<td>9,456,678</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.053</td>
<td>0.069</td>
<td>0.071</td>
<td>0.040</td>
<td>0.053</td>
<td>0.055</td>
<td>0.026</td>
<td>0.035</td>
<td>0.036</td>
</tr>
<tr>
<td>Mean Dependent</td>
<td>0.104</td>
<td>0.104</td>
<td>0.104</td>
<td>0.072</td>
<td>0.072</td>
<td>0.072</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
</tr>
<tr>
<td>Baseline FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Controls</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maternal Birth State Trends</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Elasticities reported. Robust standard errors clustered at the level of the mother’s birth state. ***, **, * represent statistical significance at 1, 5 and 10 percent levels.
Contemporary, Teenage, and Early-life Cigarette Taxes

Panel B: Never Movers, Adding Teenage and Contemporary Taxes

<table>
<thead>
<tr>
<th></th>
<th>1(Any Pre-Pregnancy Smoking)</th>
<th>1(Any Prenatal Smoking)</th>
<th>Prenatal Per Day Cigarettes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>At-Conception Cigarette Tax</td>
<td>-0.341** -0.3336** -0.2253***</td>
<td>-0.392** -0.3869* -0.2499***</td>
<td>-0.4110** -0.4222** -0.2471**</td>
</tr>
<tr>
<td>Teenage (Age 13) Cigarette Tax</td>
<td>0.1361** 0.1208* 0.0206</td>
<td>0.1634*** 0.1433** 0.0289</td>
<td>0.1564*** 0.1339* 0.0415</td>
</tr>
<tr>
<td>Present-Day Cigarette Tax</td>
<td>0.2498* 0.1367 0.1696</td>
<td>0.2725* 0.1336 0.1759</td>
<td>0.2529* 0.0335 0.0708</td>
</tr>
</tbody>
</table>

Observations	6,500,087	6,500,087	6,500,087	6,502,930	6,502,930	6,502,930	6,493,287	6,493,287	6,493,287
Adjusted R-squared	0.054	0.071	0.073	0.041	0.055	0.057	0.026	0.036	0.037
Mean Dependent	0.111	0.111	0.111	0.077	0.077	0.077	0.567	0.567	0.567
Baseline FE	X	X	X	X	X	X	X	X	X
Controls	X	X	X	X	X	X	X	X	X
Maternal Birth State Trends	X	X	X	X	X	X	X	X	X

Notes: Elasticities reported. Robust standard errors clustered at the level of the mother’s birth state. ***, **, * represent statistical significance at 1, 5 and 10 percent levels.
Contemporary, Teenage, and Early-life Cigarette Taxes

Panel C: Main Sample, Only Adding Teenage Taxes

<table>
<thead>
<tr>
<th>At-Conception Cigarette Tax</th>
<th>1(Any Pre-Pregnancy Smoking)</th>
<th>1(Any Prenatal Smoking)</th>
<th>Prenatal Per Day Cigarettes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>At-Conception Cigarette Tax</td>
<td>-0.3243** (0.1343)</td>
<td>-0.3150** (0.1427)</td>
<td>-0.2099** (0.0681)</td>
</tr>
<tr>
<td>Teenage (Age 13) Cigarette Tax</td>
<td>0.0943* (0.0570)</td>
<td>0.0887 (0.0639)</td>
<td>0.0123 (0.0356)</td>
</tr>
</tbody>
</table>

Observations:
- (1) 9,466,192
- (2) 9,466,192
- (3) 9,466,192
- (4) 9,470,171
- (5) 9,470,171
- (6) 9,470,171
- (7) 9,456,678
- (8) 9,456,678
- (9) 9,456,678

Adjusted R-squared:
- (1) 0.053
- (2) 0.069
- (3) 0.071
- (4) 0.040
- (5) 0.053
- (6) 0.055
- (7) 0.026
- (8) 0.035
- (9) 0.036

Mean Dependent:
- (1) 0.104
- (2) 0.104
- (3) 0.104
- (4) 0.072
- (5) 0.072
- (6) 0.072
- (7) 0.521
- (8) 0.521
- (9) 0.521

Baseline FE:
- (1) X
- (2) X
- (3) X
- (4) X
- (5) X
- (6) X
- (7) X
- (8) X
- (9) X

Controls:
- (1) X
- (2) X
- (3) X
- (4) X
- (5) X
- (6) X
- (7) X
- (8) X
- (9) X

Maternal Birth State Trends:
- (1) X
- (2) X
- (3) X
- (4) X
- (5) X
- (6) X
- (7) X
- (8) X
- (9) X

Notes: Elasticities reported. Robust standard errors clustered at the level of the mother’s birth state. ***, **, * represent statistical significance at 1, 5 and 10 percent levels.
Panel D: Main Sample, Adding Each Cigarette Tax Alone

<table>
<thead>
<tr>
<th></th>
<th>1(Any Pre-Pregnancy Smoking)</th>
<th>1(Any Prenatal Smoking)</th>
<th>Prenatal Per Day Cigarettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>At-Conception Cigarette Tax</td>
<td>-0.2127***</td>
<td>-0.2403***</td>
<td>-0.2506***</td>
</tr>
<tr>
<td></td>
<td>(0.0704)</td>
<td>(0.0853)</td>
<td>(0.0847)</td>
</tr>
<tr>
<td>Teenage (Age 13) Cigarette Tax</td>
<td>0.0304</td>
<td>0.0397</td>
<td>0.0560</td>
</tr>
<tr>
<td></td>
<td>(0.0411)</td>
<td>(0.0417)</td>
<td>(0.0439)</td>
</tr>
<tr>
<td>Present-Day Cigarette Tax</td>
<td>0.1608*</td>
<td>0.1566</td>
<td>0.0753</td>
</tr>
<tr>
<td></td>
<td>(0.0889)</td>
<td>(0.1018)</td>
<td>(0.1039)</td>
</tr>
<tr>
<td>Observations</td>
<td>9,466,192</td>
<td>9,466,192</td>
<td>9,456,678</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.071</td>
<td>0.071</td>
<td>0.036</td>
</tr>
<tr>
<td>Mean Dependent</td>
<td>0.104</td>
<td>0.104</td>
<td>0.521</td>
</tr>
<tr>
<td>Baseline FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Controls</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maternal Birth State Trends</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Notes: Elasticities reported. Robust standard errors clustered at the level of the mother’s birth state. ***, **, * represent statistical significance at 1, 5 and 10 percent levels.
Panel A: Real Cigarette Tax at Each Age

Outcome: 1 (Any Prenatal Smoking)

Real Cigarette Tax Level at Each Age

95% CI Point Estimate
Other Notable Robustness Checks

1. Real taxes increases at each age (separately considered)
2. Event study of tax increases relative to mother’s birth year
3. Effect over trimester
4. Balanced panels
5. Alternative clustering of standard errors
Other Notable Robustness Checks

1. Real taxes increases at each age (separately considered)
2. Event study of tax increases relative to mother’s birth year
3. Effect over trimester
4. Balanced panels
5. Alternative clustering of standard errors
Other Notable Robustness Checks

1. Real taxes increases at each age (separately considered)
2. Event study of tax increases relative to mother’s birth year
3. Effect over trimester
4. Balanced panels
5. Alternative clustering of standard errors
Other Notable Robustness Checks

1. Real taxes increases at each age (separately considered)
2. Event study of tax increases relative to mother’s birth year
3. Effect over trimester
4. Balanced panels
5. Alternative clustering of standard errors
Other Notable Robustness Checks

1. Real taxes increases at each age (separately considered)
2. Event study of tax increases relative to mother’s birth year
3. Effect over trimester
4. Balanced panels
5. Alternative clustering of standard errors
Mechanisms for the Main Effect
Mechanisms

1. Human Capital and Socioeconomic Status
2. Earmarked Expenditure
3. Related State-level Tobacco Control Policies
4. Biological impacts: mother and infant health
5. *Unable to test: Intergenerational effects*
Mechanisms

• Early-life cigarette taxes influence *human capital formation* and adult *socioeconomic status*

 1. Higher cigarette tax in the years leading up to the mother’s in-utero exposure changes the likelihood of:

 1.1 ↑ college degree attainment
 1.2 ↑ married at first delivery
 1.3 ↓ WIC receipt

 2. Also show that SES/human capital is linked to lower prenatal smoking
Early-life cigarette taxes influence *human capital formation* and adult *socioeconomic status*

1. Higher cigarette tax in the years leading up to the mother’s in-utero exposure changes the likelihood of:
 1.1 ↑ *college* degree attainment
 1.2 ↑ *married* at first delivery
 1.3 ↓ *WIC* receipt

2. Also show that SES/human capital is linked to lower prenatal smoking
Mechanisms

- Early-life cigarette taxes influence *human capital formation* and adult *socioeconomic status*

 1. Higher cigarette tax in the years leading up to the mother’s in-utero exposure changes the likelihood of:
 1.1 ↑ *college* degree attainment
 1.2 ↑ *married* at first delivery
 1.3 ↓ *WIC* receipt

 2. Also show that SES/human capital is linked to lower prenatal smoking
Mechanisms

• *Multigenerational effects* on health and health behaviors.

• Mother health:
 1. ↓ pre-pregnancy BMI
 2. ↓ diabetes
 3. ↑ breastfeeding

• Infant health:
 1. ↓ very premature
 2. ↓ very low birth weight
• *Multigenerational effects* on health and health behaviors.
• Mother health:
 1. ↓ pre-pregnancy BMI
 2. ↓ diabetes
 3. ↑ breastfeeding
• Infant health:
 1. ↓ very premature
 2. ↓ very low birth weight
• *Multigenerational effects* on health and health behaviors.
• Mother health:
 1. ↓ pre-pregnancy BMI
 2. ↓ diabetes
 3. ↑ breastfeeding
• Infant health:
 1. ↓ very premature
 2. ↓ very low birth weight
EXTENSIONS—Is this a Cohort Effect?
Remaining Questions

- Remaining questions:
 1. When did early-life taxes become important?
 2. Why do contemporary and teen taxes fail to affect smoking behavior? Have these cigarette taxes lost their bite? (Hansen et al. (2017); DeCicca et al. (2020))

- Add earlier delivery years, using the unrevised birth certificate data:
 - Consider 1996-2005 and 2002-2020
 - Ideally want to show when contemporary/teen taxes became less important and when early-life taxes arose as important
The Changing Importance of Life-Course Cigarette Taxes

Panel A: Cigarette Taxes over 1996-2005

Outcome: 1(Prenatal Smoking)

Birth Certificate Years Included (1996+)

Panel B: Cigarette Taxes over 2002-2020

At-Conception Tax

Present-Day Tax

Teenage Tax
The Changing Importance of Life-Course Cigarette Taxes

Panel B: Cigarette Taxes over 2002-2020

Outcome: 1 (Prenatal Smoking)

Birth Certificate Years Included (to 2020)

- At-Conception Tax
- Present-Day Tax
- Teenage Tax

Hoehn-Velasco et al
Conclusions
• **Primary Findings:** long-term link between mother’s exposure to higher in-utero (early-life) cigarette taxes and later-life adult prenatal smoking

1. The importance of early-life taxes holds over various specifications, notably:
 - Controlling for present-day and teenage cigarette taxes.
 - Event study
 - Considering taxes at all ages

2. Most plausible mechanisms:
 2.1 *Human capital formation* and adult *socioeconomic status*
 2.2 *Multigenerational effects* on health and health behaviors
Conclusions

- **Primary Findings:** long-term link between mother’s exposure to higher in-utero (early-life) cigarette taxes and later-life adult prenatal smoking

 1. The importance of early-life taxes holds over various specifications, notably:
 - Controlling for present-day and teenage cigarette taxes.
 - Event study
 - Considering taxes at all ages

 2. Most plausible mechanisms:
 2.1 *Human capital formation* and adult *socioeconomic status*
 2.2 *Multigenerational effects* on health and health behaviors
Conclusions

• **Primary Findings:** long-term link between mother’s exposure to higher in-utero (early-life) cigarette taxes and later-life adult prenatal smoking

 1. The importance of early-life taxes holds over various specifications, notably:
 - Controlling for present-day and teenage cigarette taxes.
 - Event study
 - Considering taxes at all ages

 2. Most plausible mechanisms:
 2.1 *Human capital formation* and adult *socioeconomic status*
 2.2 *Multigenerational effects* on health and health behaviors
Primary Findings: long-term link between mother’s exposure to higher in-utero (early-life) cigarette taxes and later-life adult prenatal smoking

1. The importance of early-life taxes holds over various specifications, notably:
 - Controlling for present-day and teenage cigarette taxes.
 - Event study
 - Considering taxes at all ages

2. Most plausible mechanisms:
 2.1 Human capital formation and adult socioeconomic status
 2.2 Multigenerational effects on health and health behaviors
Two notable cohort effects appear in the data:

1. Contemporary and teenage cigarette taxes: influential for older cohorts, those with first child during the late 1990s and early 2000s
2. Early-life cigarette taxes appear important after 2006

Early-life cigarette taxes most influential over the past 15 years
• Two notable cohort effects appear in the data:
 1. Contemporary and teenage cigarette taxes: influential for older cohorts, those with first child during the late 1990s and early 2000s
 2. Early-life cigarette taxes appear important after 2006
• Early-life cigarette taxes most influential over the past 15 years
• Two notable cohort effects appear in the data:
 1. Contemporary and teenage cigarette taxes: influential for older cohorts, those with first child during the late 1990s and early 2000s
• Early-life cigarette taxes most influential over the past 15 years
Two notable *cohort effects* appear in the data:

1. Contemporary and teenage cigarette taxes: influential for older cohorts, those with first child during the late 1990s and early 2000s
2. Early-life cigarette taxes appear important after 2006

Early-life cigarette taxes most influential over the past 15 years
1. Contemporary cigarette taxes may have “lost their bite” in recent years, aligning with Hansen et al. (2017); DeCicca et al. (2020)

2. Public policies may have cohort-specific effects
 - Today, pregnant women less responsive to contemporary/teenage taxes
 - Marginal smokers quit smoking earlier in life or never starting to begin with
 - Remaining smokers are more committed (inelastic demand)
 - Instead, early-life cigarette taxes most influential over the past 15 years (after 2006)

3. Demonstrates the persistent effect of public policy on long-term health behaviors
1. Contemporary cigarette taxes may have “lost their bite” in recent years, aligning with Hansen et al. (2017); DeCicca et al. (2020)

2. Public policies may have cohort-specific effects
 - Today, pregnant women less responsive to contemporary/teenage taxes
 - Marginal smokers quit smoking earlier in life or never starting to begin with
 - Remaining smokers are more committed (inelastic demand)
 - Instead, early-life cigarette taxes most influential over the past 15 years (after 2006)

3. Demonstrates the persistent effect of public policy on long-term health behaviors
General Conclusions

1. Contemporary cigarette taxes may have “lost their bite” in recent years, aligning with Hansen et al. (2017); DeCicca et al. (2020)

2. Public policies may have cohort-specific effects
 - Today, pregnant women less responsive to contemporary/teenage taxes
 - Marginal smokers quit smoking earlier in life or never starting to begin with
 - Remaining smokers are more committed (inelastic demand)
 - Instead, early-life cigarette taxes most influential over the past 15 years (after 2006)

3. Demonstrates the persistent effect of public policy on long-term health behaviors
General Conclusions

1. Contemporary cigarette taxes may have “lost their bite” in recent years, aligning with Hansen et al. (2017); DeCicca et al. (2020)

2. Public policies may have cohort-specific effects
 - Today, pregnant women less responsive to contemporary/teenage taxes
 - Marginal smokers quit smoking earlier in life or never starting to begin with
 - Remaining smokers are more committed (inelastic demand)
 - Instead, early-life cigarette taxes most influential over the past 15 years (after 2006)

3. Demonstrates the persistent effect of public policy on long-term health behaviors
1. **Contemporary cigarette** taxes may have “lost their bite” *in recent years*, aligning with Hansen et al. (2017); DeCicca et al. (2020)

2. Public policies may have **cohort-specific effects**
 - Today, pregnant women *less responsive to contemporary/teenage taxes*
 - Marginal smokers quit smoking earlier in life or never starting to begin with
 - Remaining smokers are more committed (inelastic demand)
 - Instead, *early-life cigarette taxes most influential over the past 15 years (after 2006)*

3. Demonstrates the **persistent effect of public policy on long-term health behaviors**
General Conclusions

1. *Contemporary cigarette* taxes may have *“lost their bite” in recent years*, aligning with Hansen et al. (2017); DeCicca et al. (2020)

2. Public policies may have *cohort-specific effects*
 - Today, pregnant women *less responsive to contemporary/teenage taxes*
 - Marginal smokers quit smoking earlier in life or never starting to begin with
 - Remaining smokers are more committed *(inelastic demand)*
 - Instead, *early-life cigarette* taxes most influential over the *past 15 years* *(after 2006)*

3. Demonstrates the *persistent effect of public policy on long-term health behaviors*
1. Contemporary cigarette taxes may have “lost their bite” in recent years, aligning with Hansen et al. (2017); DeCicca et al. (2020)

2. Public policies may have cohort-specific effects
 - Today, pregnant women less responsive to contemporary/teenage taxes
 - Marginal smokers quit smoking earlier in life or never starting to begin with
 - Remaining smokers are more committed (inelastic demand)
 - Instead, early-life cigarette taxes most influential over the past 15 years (after 2006)

3. Demonstrates the persistent effect of public policy on long-term health behaviors
Thank you!

Email: lvelasco@gsu.edu