Revisiting the Effects of Cigarette Taxes on Smoking Outcomes

Vinish Shrestha

TOPS Presentation.

2023-03-10
Disclosures

1. No funding was obtained for this work by the author.
2. No tobacco-related funding has been acquired by the author in the past 10 years.

Note: I am happy to share codes for replication. The codes will eventually be posted on my personal website.
Section 1

Illustrations of 3 cases
Case 1 (Homogeneous Treatment Effects across Units and Time)
Simulation Results (varying treatment time of later unit)

TWFE: $Y_{it} = \beta D_{it} + \eta_i + \theta_t + \epsilon_{it}$
Case 2 (Heterogeneous Treatment Effects by Units)

Illustrations of 3 cases

PRE(k) MID(k, l) POST(l)

outcome

group
early
late
never treated

period

0
10
20
30
5 10 15 20

Vinish Shrestha (TOPS Presentation.)
Revisiting the Effects of Cigarette Taxes on Smoking Outcomes
2023-03-10
Illustrations of 3 cases

Simulation Results (varying treatment time of later unit)

Heterogeneous Treatment Effect (By Unit)

TWFE Estimate

mean treatment effect

Vinish Shrestha (TOPS Presentation.)
Revisiting the Effects of Cigarette Taxes on Smoking Outcomes
2023-03-10
Case 3 (Heterogeneous Treatment Effects by Time)
Some Realizations

1. Homogeneous treatment effects
 - TWFE works fine

2. Heterogeneous treatment effects across unit
 - TWFE can be incorrect
 - depends on treatment timing

3. Heterogeneous treatment effects over time
 - early treated units acting as control for later treated units
 - “bad comparison”
 - negative weighting problem

- In cases 2 and 3 \(TWFE \neq \hat{ATT} \) (average treatment effect on the treated estimate)
Section 2

Motivation and Main Findings
Motivation and Main Findings

Motivation

- Cigarette taxes widely used as a policy instrument
 - reduce smoking and increase revenue
- Research heavily rely on TWFE specifications (Review DeCicca, Kenkel, and Lovenheim (2020))
 - “... an important issue for the analysis of cigarette taxes that has not been sufficiently explored by researchers”

TWFE specification

\[smoking_{st} = \alpha + \beta \times tax_{st} + \theta_t + \eta_s + \epsilon_{st} \]

- Continuous measure of cigarette taxes (prices)
 - within unit (state) variation in cigarette taxes (prices) over time
 - multiple-treatment and multiple-control group framework (staggered framework)
Recent advancements in staggered DiD literature

- Highlights TWFE concerns (De Chaisemartin and d’Haultfoeuille (2020), Goodman-Bacon (2021), Callaway and Sant’Anna (2021), Sun and Abraham (2021), Callaway (2022))
- One main issue
 - negative weighting problem
 - if ATT varies with the length of exposure to treatment, then early treated group forms a “bad comparison group” for later treated units
- Particularly dire
 - if a significant number of units are eventually treated

Note: Between 2004-2010 38 states increased cigarette taxes at least once.
Study’s Purpose

- Revisit the literature of cigarette taxes and smoking outcomes
- How different are the TWFE estimates from \hat{ATE}?
 - TWFE versus \hat{ATE} from Callaway and Sant’Anna (2021) (CS estimator)
 - TWFE versus (i) canonical event-study, (ii) interaction-weighted estimator (Sun and Abraham (2021)), (iii) event-study-type estimates (Callaway and Sant’Anna (2021))

1. Balanced panel data Behavioral Risk Factor Surveillance System Selected Metropolitan/Micropolitan Area Risk Trends (BRFSS SMART)
2. Two periods: (i) 2004-2010; and (ii) 2015-2020
3. TWFE specification:
 - $smoking_{st} = \alpha + \beta \times tax_{st} + \theta_t + \eta_s + \epsilon_{st}$
 - $tax_{st} \in \{0, 1\}$ (binary treatment)
Main Findings

- Different approaches demonstrate effectiveness of tax incidence in reducing smoking-related outcomes

1. $|\text{TWFE estimate}| < |\hat{ATT}|$ from CS estimator
 - 2004-2010 period: TWFE estimate is about 65% of the overall \hat{ATT} from CS

2. Decomposition of TWFE following Goodman-Bacon (2021) shows huge weight (32%) is placed on cases that use later treated units in comparison to early treated units in 2004-2010 sample
 - Not too bad in 2015-2020 sample (4.7%)

3. Canonical event study, SA approach, and CS event-study type estimates all show gradual but effects increasing in magnitude over time

4. $|\hat{ATT}_{2015-2020}|$ only 63% of $|\hat{ATT}_{2004-2010}|$
Section 3

Data
BRFSS SMART

- Behavioral Risk Factor Surveillance System (BRFSS) Selected Metropolitan/Micropolitan Area Risk Trends (SMART)
 - years 2004-2010 and 2015-2020

- Smart project initiated to produce local areas defined as Metropolitan/Micropolitan (MMSAs) == locality of interest

- Each MMSAs include at least 500 individuals

- The number of MMSAs vary by year
 - 134 in 2004, while 198 in 2010 (entry and exit)

- Focus on the status of current smoker as the outcome variable

- Create a balanced panel of the percent of current smokers collapsed at the MMSA-year level
MMSA map (balanced panel)

- green MMSAs are covered in the BRFSS SMART balanced panel
- at least 1 MMSA for 46 states; more than 2 MMSAs in many states
- 108 and 95 MMSAs in balanced panel 2004-2010 and 2015-2020
- states not represented: Alaska, Hawai, North Dakota, Rhode Island
Change (Increase) in cigarette taxes as treatment

- Tax Burden of Tobacco for years 1970-2019 (prepared by Orzechowski and Walker)
- Binary variable to represent tax change within state
 - treatment assignment
 - “tax change year” takes a value 1 and MMSAs within the state retain this value

- A handful of states with multiple tax increases
 - PA in July 2004 and November 2009
 - both fall within 2004-2010 survey year
 - use the first one to denote the treatment assignment
<table>
<thead>
<tr>
<th>Year</th>
<th>States</th>
<th>Count of MMSAs</th>
<th>Average Tax Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>AL, HW, MI, NJ, PA, RI, VA</td>
<td>108</td>
<td>0.26</td>
</tr>
<tr>
<td>2005</td>
<td>AK, CO, KY, ME, MN, MT, NC, NH, OH, OK, WA</td>
<td>108</td>
<td>0.49</td>
</tr>
<tr>
<td>2006</td>
<td>AZ, IA, VT</td>
<td>108</td>
<td>0.67</td>
</tr>
<tr>
<td>2007</td>
<td>CT, DE, IN, SD, TN, TX</td>
<td>108</td>
<td>0.75</td>
</tr>
<tr>
<td>2008</td>
<td>DC, MA, MD, NY, WI</td>
<td>108</td>
<td>0.97</td>
</tr>
<tr>
<td>2009</td>
<td>AR, FL, MS</td>
<td>108</td>
<td>0.74</td>
</tr>
<tr>
<td>2010</td>
<td>NM, SC, UT</td>
<td>108</td>
<td>0.75</td>
</tr>
<tr>
<td>2015</td>
<td>DC, KS, LA, NV, OH, RI, VT</td>
<td>95</td>
<td>0.53</td>
</tr>
<tr>
<td>2016</td>
<td>AL, CT, PA, WV</td>
<td>95</td>
<td>0.51</td>
</tr>
<tr>
<td>2017</td>
<td>CA</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>2018</td>
<td>DE, KY, OK</td>
<td>95</td>
<td>0.75</td>
</tr>
<tr>
<td>2019</td>
<td>IL, NM</td>
<td>95</td>
<td>0.78</td>
</tr>
<tr>
<td>2020</td>
<td>VA</td>
<td>95</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Other variables

- **Tobacco Control Variable:** The percentage of a state’s population under a bar ban
 - American Nonsmokers’ Rights Foundation (ANRF)

Pre-treatment variables (posttreatment bias Rosenbaum (1984))

- Locality specific unemployment rate for 2000 and 2010
 - Merged Outgoing Rotation Group Earnings Data (2000 and 2010)
- CPS tobbaco supplement
 - Anti-smoking sentiment measure 1998-1999
 - in spirit of DeCicca et al. (2008)
 - collapsed at the locality level
 - Change in the proportion of current smokers between 1998-1999 and 2001-2002
Section 4

Method: TWFE
Method 1 (TWFE: explanation borrowed from Roth et al. (2022))

\[Y_{it} = \beta D_{it} + \theta_t + \eta_i + \epsilon_{it}, \ldots \]

Also,
\[Y_{it}(g) = Y_{it}(0) + \tau_{it}(g), \ldots \]

Using Frisch-Lovell Theorem:
\[\hat{\beta} = \sum_i \sum_t \frac{(D_{it} - \hat{D}_{it})(Y_{it})}{(D_{it} - \hat{D}_{it})^2}, \ldots \]

where,
\[\hat{D}_{it} = \bar{D}_i + \bar{D}_t - \bar{D} \]

- Weight is proportional to \((D_{it} - \hat{D}_{it})\)
- For early treated units: \(\bar{D}_i \approx 1\)
- If eventually almost all units are treated then \(\bar{D}_t \approx 1\) towards the end period
- So, towards the end period: \(\hat{D}_{it} > 1\) as \(\bar{D} < 1\)
- Numerator \((D_{it} - \hat{D}_{it})\) negative even if \(D_{it} = 1\)
 - Puts negative weight on \(\tau_{it}(g)\)
Method: TWFE

\((D_{it} - \hat{D}_{it})\) for units treated in 2005 and 2006
<table>
<thead>
<tr>
<th>type</th>
<th>2004-2010</th>
<th>2015-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weight</td>
<td>avg.estimate</td>
</tr>
<tr>
<td>Earlier vs Later Treated</td>
<td>0.218</td>
<td>-0.898</td>
</tr>
<tr>
<td>Later vs Always Treated</td>
<td>0.177</td>
<td>-0.296</td>
</tr>
<tr>
<td>Later vs Earlier Treated</td>
<td>0.316</td>
<td>-0.233</td>
</tr>
<tr>
<td>Treated vs Untreated</td>
<td>0.290</td>
<td>-0.834</td>
</tr>
</tbody>
</table>

Note: Summary of Goodman Bacon decomposition of TWFE estimate as all possible 2 times 2 DiD estimates summarized by groups in column 1.
Method: static and dynamic TWFE

1. TWFE (Static)

\[Y_{ist} = \alpha + \beta D_{ist} + \eta_i + \theta_t + \epsilon_{it} \]

2. TWFE canonical event study (Dynamic)

\[Y_{ist} = \alpha + \sum_{k=-K}^{L} \gamma_k D^k_{ist} + \eta_i + \theta_t + \epsilon_{it} \]

- \(1(t - g_i = k) = D^k_{st}; \) relative time indicator away from policy year \(g_i\)
- omitted category include \(E\) and year before the treatment
Section 5

Method: Alternatives to TWFE
Group time ATT

<table>
<thead>
<tr>
<th>period first treated</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>S1, S2</td>
</tr>
<tr>
<td>2007</td>
<td>S3, S4, S5</td>
</tr>
<tr>
<td>2008</td>
<td></td>
</tr>
</tbody>
</table>

- say, S0 is never treated
- define group g as units first treated in period g

$\text{Group}(g)\,\text{time}(t)\,\text{ATT}$

- $ATT_g=2006,t=2006$; $ATT_g=2006,t=2007$; $ATT_g=2006,t=2008$
- $ATT_g=2007,t=2007$; $ATT_g=2007,t=2008$
Callaway and Sant’Anna Estimator (Callaway and Sant’Anna (2021))

- Identify group-time ATT

\[
ATT(g, t) = E(Y_t(g) - Y_t(0)|G_g = 1)
\] (3)

Under a) unconditional parallel trend assumption b) no-anticipation

\[
\hat{ATT}(g, t = t^*) = \left[\bar{Y}_{t^*}(g) - \bar{Y}_{pretreat}(g) \right] - \left[\bar{Y}_{t^*}(C) - \bar{Y}_{pretreat}(C) \right]
\]

\[
\hat{ATT}(g, t) = \frac{\sum_i (Y_{i,t} \cdot 1(G_i = g) - Y_{i,g-1} \cdot 1(G_i = g))}{\sum_i 1(G_i = g)} - \frac{\sum_i (Y_{i,t} \cdot 1(G_i = C) - Y_{i,g-1} \cdot 1(G_i = C))}{\sum_i 1(G_i = C)}
\]

group g before & after
group C before & after

- \(C \) can include i) never treated; or ii) not-yet-treated (until \(t \)) show results
CS Doubly Robust Estimator

- parallel trend satisfied conditional upon pretreatment covariates

\[
\hat{ATT}(g, t) = \frac{1}{N} \sum \left[\left(\frac{1. (G_i = 1)}{\sum_i 1. (G_i = g)} - \frac{\hat{p}_g(X)1.(G_i=C)}{1-\hat{p}_g(X).1(G_i=C)} \right) \left(Y_{i,t} - Y_{i,g-1} - \hat{m}_{g,t}(X) \right) \right]
\]

(5)

Combines 1) IPW (Abadie (2005)) 2) Outcome Regression (Heckman, Ichimura, and Todd (1997))

- These \(\hat{ATT}(g, t) \) are then aggregated to form i) event study type estimates and ii) point estimate \(\hat{ATT} \)
Section 6

Results (using parsimonious specification)
R1. TWFE and Event Study Estimates (2004-2010 Sample)

Note: i) red dot = TWFE static estimate, ii) green = Canonical event study estimates, iii) orange = SA event study estimates, iv) black dash = average of estimates from canonical event study estimates

A. Without Controls
R2. TWFE and Event Study Estimates (2015-2020 Sample)

Note: i) red dot = TWFE static estimate, ii) green = Canonical event study estimates, iii) orange = SA event study estimates, iv) black dash = average of estimates from canonical event study estimates

A. Without Controls

Vinish Shrestha (TOPS Presentation.) Revisiting the Effects of Cigarette Taxes on Smoking Outcomes 2023-03-10 33 / 40
R2. CS Event-Study-Type Estimates (2004-2010 Sample)

Note: The analysis use not-yet-treated units (nyt) as the comparison.
R2. CS Event-Study-Type Estimates (2015-2020 Sample)

Note: The analysis use not-yet-treated units (nyt) as the comparison.
R3. TWFE and \hat{ATT} from Callaway and Sant’Anna (2021)

Note: The red dashed line is the TWFE estimate. The \hat{ATT} are obtained from aggregating the group time ATT estimates.

A. Overall ATT from CS (2004–2010)

<table>
<thead>
<tr>
<th>Specification Type</th>
<th>Overall ATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nt(no controls)</td>
<td>-1.207</td>
</tr>
<tr>
<td>nt(controls)</td>
<td>-1.274</td>
</tr>
<tr>
<td>nyt(no controls)</td>
<td>-1.282</td>
</tr>
<tr>
<td>nyt(controls)</td>
<td>-1.274</td>
</tr>
</tbody>
</table>

B. Overall ATT from CS (2015–2020)

<table>
<thead>
<tr>
<th>Specification Type</th>
<th>Overall ATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nt(no controls)</td>
<td>-0.796</td>
</tr>
<tr>
<td>nt(controls)</td>
<td>-0.732</td>
</tr>
<tr>
<td>nyt(no controls)</td>
<td>-0.782</td>
</tr>
<tr>
<td>nyt(controls)</td>
<td>-0.732</td>
</tr>
</tbody>
</table>
Section 7

Conclusion
Some concluding remarks

- Cigarette tax are an effective means of reducing smoking prevalence
 - consistent with earlier studies
- However, TWFE estimates tend to be biased downwards in magnitude
 - particularly in a sample when the treatment is of multiple time-multiple group and the majority of units are eventually treated
- Canonical event study estimates capture heterogeneity by time
 - estimates are similar to CS-type event study and SA-type event study

Using point estimates of ATT that respects treatment heterogeneity can increase the magnitude of the elasticity estimates (until now the elasticity estimates are mainly based on TWFE estimates)
References I

References II

